Isomorphism of graph classes related to the circular-ones property

We give a linear-time algorithm that checks for isomorphism between two 0-1 matrices that obey the circular-ones property. Our algorithm is similar to the isomorphism algorithm for interval graphs of Lueker and Booth, but works on PC trees, which are unrooted and have a cyclic nature, rather than with PQ trees, which are rooted. This algorithm leads to linear-time isomorphism algorithms for related graph classes, including Helly circular-arc graphs, Γ circular-arc graphs, proper circular-arc graphs and convex-round graphs.

[1]  Yahav Nussbaum,et al.  From a Circular-Arc Model to a Proper Circular-Arc Model , 2008, WG.

[2]  Wen-Lian Hsu,et al.  PC trees and circular-ones arrangements , 2003, Theor. Comput. Sci..

[3]  Jayme Luiz Szwarcfiter,et al.  A Simple Linear Time Algorithm for the Isomorphism Problem on Proper Circular-Arc Graphs , 2008, SWAT.

[4]  J. Edmonds,et al.  A Combinatorial Decomposition Theory , 1980, Canadian Journal of Mathematics.

[5]  Lin Chen A Selected Tour of the Theory of Identification Matrices , 1997, COCOON.

[6]  Jayme Luiz Szwarcfiter,et al.  Unit Circular-Arc Graph Representations and Feasible Circulations , 2008, SIAM J. Discret. Math..

[7]  Lin Chen Graph Isomorphism and Identification Matrices: Parallel Algorithms , 1996, IEEE Trans. Parallel Distributed Syst..

[8]  Yossi Shiloach,et al.  Fast Canonization of Circular Strings , 1981, J. Algorithms.

[9]  Jørgen Bang-Jensen,et al.  Convex-Round and Concave-Round Graphs , 2000, SIAM J. Discret. Math..

[10]  Wei-Kuan Shih,et al.  A New Planarity Test , 1999, Theor. Comput. Sci..

[11]  Emeric Gioan,et al.  Circle Graph Recognition in Time O(n+m) α(n+m) , 2011, ArXiv.

[12]  Kellogg S. Booth,et al.  A Linear Time Algorithm for Deciding Interval Graph Isomorphism , 1979, JACM.

[13]  Haim Kaplan,et al.  Certifying algorithms for recognizing proper circular-arc graphs and unit circular-arc graphs , 2009, Discret. Appl. Math..

[14]  Fanica Gavril,et al.  Algorithms on circular-arc graphs , 1974, Networks.

[15]  Oleg Verbitsky,et al.  Interval Graphs: Canonical Representations in Logspace , 2010, SIAM J. Comput..

[16]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[17]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[18]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[19]  Jayme Luiz Szwarcfiter,et al.  Linear-Time Recognition of Helly Circular-Arc Models and Graphs , 2011, Algorithmica.

[20]  Elaine Marie Eschen Circular-arc graph recognition and related problems , 1998 .

[21]  Jeremy P. Spinrad,et al.  Recognition of Circle Graphs , 1994, J. Algorithms.

[22]  Rolf H. Möhring,et al.  An Incremental Linear-Time Algorithm for Recognizing Interval Graphs , 1989, SIAM J. Comput..

[23]  Robert E. Tarjan,et al.  Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..

[24]  Ross M. McConnell,et al.  Algebraic Operations on PQ Trees and Modular Decomposition Trees , 2005, WG.

[25]  Emeric Gioan,et al.  Practical and Efficient Circle Graph Recognition , 2011, Algorithmica.

[26]  A. Tucker,et al.  Matrix characterizations of circular-arc graphs , 1971 .

[27]  Oleg Verbitsky,et al.  Solving the Canonical Representation and Star System Problems for Proper Circular-Arc Graphs in Logspace , 2012, FSTTCS.

[28]  Ross M. McConnell A certifying algorithm for the consecutive-ones property , 2004, SODA '04.

[29]  Jayme Luiz Szwarcfiter,et al.  On cliques of Helly Circular-arc Graphs , 2008, Electron. Notes Discret. Math..

[30]  Wen-Lian Hsu O(M*N) Algorithms for the Recognition and Isomorphism Problems on Circular-Arc Graphs , 1995, SIAM J. Comput..

[31]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[32]  Philip N. Klein Efficient Parallel Algorithms for Chordal Graphs , 1996, SIAM J. Comput..

[33]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .