Parallel singular value decomposition of complex matrices using multidimensional CORDIC algorithms
暂无分享,去创建一个
[1] J. F. Böhme,et al. Reducing the computations of the singular value decomposition array given by Brent and Luk , 1991 .
[2] R. Brent,et al. Almost linear-time computation of the singular value decomposition using mesh-connected processors , 1983 .
[3] K. J. Ray Liu,et al. Systolic block Householder transformation for RLS algorithm with two-level pipelined implementation , 1992, IEEE Trans. Signal Process..
[4] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[5] Joseph R. Cavallaro,et al. Jacobi-like Matrix Factorizations with CORDIC-based Inexact Diagonalizations , 1994 .
[6] Joseph R. Cavallaro,et al. CORDIC arithmetic for an SVD processor , 1987, 1987 IEEE 8th Symposium on Computer Arithmetic (ARITH).
[7] Jean-Marc Delosme,et al. Highly concurrent computing structures for matrix arithmetic and signal processing , 1982, Computer.
[8] A. L. Fisher,et al. Ultrafast compact 32-bit CMOS adders in multiple-output domino logic , 1989 .
[9] P. P. Rijk. A one-sided Jacobi algorithm for computing the singular value decomposition on avector computer , 1989 .
[10] Ed F. Deprettere,et al. Pipelined cordic architectures for fast VLSI filtering and array processing , 1984, ICASSP.
[11] Joseph R. Cavallaro,et al. Efficient complex matrix transformations with CORDIC , 1993, Proceedings of IEEE 11th Symposium on Computer Arithmetic.
[12] Joseph R. Cavallaro,et al. Redundant and On-Line CORDIC for Unitary Transformations , 1994, IEEE Trans. Computers.
[13] Joseph R. Cavallaro,et al. A CORDIC Processor Array for the SVD of a Complex Matrix , 1991 .
[14] Jean-Michel Muller,et al. Computing Functions cos^{-1} and sin^{-1} Using Cordic , 1993, IEEE Trans. Computers.
[15] R. Brent,et al. The Solution of Singular-Value and Symmetric Eigenvalue Problems on Multiprocessor Arrays , 1985 .
[16] Jean-Marc Delosme,et al. CORDIC Algorithms: Theory And Extensions , 1989, Optics & Photonics.
[17] Jean-Marc Delosme. Bit-level systolic algorithms for real symmetric and Hermitian eigenvalue problems , 1992, J. VLSI Signal Process..
[18] J. Delosme,et al. CORDIC algorithms in four dimensions , 1990 .
[19] J.-M. Delosme,et al. VLSI implementation of rotations in pseudo-Euclidean spaces , 1983, ICASSP.
[20] D. Schimmel. Bit-level Jacobi-like algorithms for eigenvalue and singular value decompositions , 1991 .
[21] J. Delosme. A Processor for Two-Dimensional Symmetric Eigenvalue and Singular Value Arrays. , 1987 .
[22] Y.H. Hu,et al. CORDIC-based VLSI architectures for digital signal processing , 1992, IEEE Signal Processing Magazine.
[23] Jürgen Götze,et al. An Efficient Jacobi-like Algorithm for Parallel Eigenvalue Computation , 1993, IEEE Trans. Computers.
[24] Ed F. Deprettere,et al. Parallel VLSI matrix pencil algorithm for high resolution direction finding , 1991, IEEE Trans. Signal Process..
[25] Yu Hen Hu,et al. CALF: a CORDIC adaptive lattice filter , 1992, IEEE Trans. Signal Process..
[26] Shen-Fu Hsiao,et al. Householder CORDIC Algorithms , 1995, IEEE Trans. Computers.
[27] Franklin T. Luk,et al. Computation Of The Generalized Singular Value Decomposition Using Mesh-Connected Processors , 1983, Optics & Photonics.
[28] J.-M. Delosme. Bit-level systolic algorithm for the symmetric eigenvalue problem , 1990, [1990] Proceedings of the International Conference on Application Specific Array Processors.
[29] F. Luk. Triangular processor array for computing singular values , 1986 .
[30] J. S. Walther,et al. A unified algorithm for elementary functions , 1899, AFIPS '71 (Spring).
[31] Shuzo Yajima,et al. Redundant CORDIC Methods with a Constant Scale Factor for Sine and Cosine Computation , 1991, IEEE Trans. Computers.
[32] Jack E. Volder. The CORDIC Trigonometric Computing Technique , 1959, IRE Trans. Electron. Comput..
[33] Tomás Lang,et al. Redundant and On-Line CORDIC: Application to Matrix Triangularization and SVD , 1990, IEEE Trans. Computers.