"Whatever Works Best for You"- A New Method for a Priori and Progressive Multi-objective Optimisation

Various multi-objective evolutionary algorithms (MOEAs) have been developed to help a decision maker (DM) search for his/her preferred solutions to multi-objective problems. However, none of these approaches has catered simultaneously for the two fundamental ways that DM can specify his/her preferences: weights and aspiration levels. In this paper, we propose an approach named iPICEA-g that allows the DM to specify his preference in either format. iPICEA-g is based on the preference-inspired co-evolutionary algorithm (PICEA-g). Solutions are guided toward regions of interest (ROIs) to the DM by co-evolving sets of goal vectors exclusively generated in the ROIs. Moreover, a friendly decision making technique is developed for interaction with the optimization process: the DM specifies his preferences easily by interactively brushing his preferred regions in the objective space. No direct elicitation of numbers is required, reducing the cognitive burden on DM. The performance of iPICEA-g is tested on a set of benchmark problems and is shown to be good.

[1]  Kalyanmoy Deb,et al.  Interactive evolutionary multi-objective optimization and decision-making using reference direction method , 2007, GECCO '07.

[2]  J. Branke,et al.  Guidance in evolutionary multi-objective optimization , 2001 .

[3]  Lothar Thiele,et al.  A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2009, Evolutionary Computation.

[4]  Dmitry Podkopaev,et al.  Interactive Multiple Criteria Decision Making based on preference driven Evolutionary Multiobjective Optimization with controllable accuracy , 2012, Eur. J. Oper. Res..

[5]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[6]  Lily Rachmawati,et al.  Preference Incorporation in Multi-objective Evolutionary Algorithms: A Survey , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[7]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[8]  Peter J. Fleming,et al.  Preference-Driven Co-evolutionary Algorithms Show Promise for Many-Objective Optimisation , 2011, EMO.

[9]  Peter J. Fleming,et al.  Preference-Inspired Coevolutionary Algorithms for Many-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[10]  Carlos A. Coello Coello,et al.  Handling preferences in evolutionary multiobjective optimization: a survey , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[11]  Gary L. Haith,et al.  Comparing a coevolutionary genetic algorithm for multiobjective optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[12]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[13]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[14]  Kalyanmoy Deb,et al.  Light beam search based multi-objective optimization using evolutionary algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[15]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[16]  Lily Rachmawati,et al.  Incorporation of imprecise goal vectors into evolutionary multi-objective optimization , 2010, IEEE Congress on Evolutionary Computation.

[17]  Peter J. Fleming,et al.  On the Evolutionary Optimization of Many Conflicting Objectives , 2007, IEEE Transactions on Evolutionary Computation.

[18]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[19]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[20]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[21]  Rob A. Rutenbar,et al.  A Unified Formulation , 1998 .

[22]  Peter J. Fleming,et al.  Evolutionary many-objective optimisation: an exploratory analysis , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[23]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[24]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[25]  Peter J. Fleming,et al.  Many-Objective Optimization: An Engineering Design Perspective , 2005, EMO.

[26]  Carlos A. Coello Coello,et al.  g-dominance: Reference point based dominance for multiobjective metaheuristics , 2009, Eur. J. Oper. Res..

[27]  Khaled Ghédira,et al.  The r-Dominance: A New Dominance Relation for Interactive Evolutionary Multicriteria Decision Making , 2010, IEEE Transactions on Evolutionary Computation.

[28]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..