Regulation of heat-shock genes in bacteria: from signal sensing to gene expression output

The heat-shock response is a mechanism of cellular protection against sudden adverse environmental growth conditions and results in the prompt production of various heat-shock proteins. In bacteria, specific sensory biomolecules sense temperature fluctuations and transduce intercellular signals that coordinate gene expression outputs. Sensory biomolecules, also known as thermosensors, include nucleic acids (DNA or RNA) and proteins. Once a stress signal is perceived, it is transduced to invoke specific molecular mechanisms controlling transcription of genes coding for heat-shock proteins. Transcriptional regulation of heat-shock genes can be under either positive or negative control mediated by dedicated regulatory proteins. Positive regulation exploits specific alternative sigma factors to redirect the RNA polymerase enzyme to a subset of selected promoters, while negative regulation is mediated by transcriptional repressors. Interestingly, while various bacteria adopt either exclusively positive or negative mechanisms, in some microorganisms these two opposite strategies coexist, establishing complex networks regulating heat-shock genes. Here, we comprehensively summarize molecular mechanisms that microorganisms have adopted to finely control transcription of heat-shock genes.

[1]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[2]  G. Varani,et al.  Structure and mechanism of a molecular rheostat, an RNA thermometer that modulates immune evasion by Neisseria meningitidis , 2016, Nucleic acids research.

[3]  Takehiro Suzuki,et al.  A Novel SRP Recognition Sequence in the Homeostatic Control Region of Heat Shock Transcription Factor σ32 , 2016, Scientific Reports.

[4]  Rakhi Dasgupta,et al.  GroEL to DnaK chaperone network behind the stability modulation of σ32 at physiological temperature in Escherichia coli , 2015, FEBS letters.

[5]  J. Batra,et al.  Role of DnaK in HspR‐HAIR interaction of Mycobacterium tuberculosis , 2015, IUBMB life.

[6]  M. Tan,et al.  Transcriptional regulation of the Chlamydia heat shock stress response in an intracellular infection , 2015, Molecular microbiology.

[7]  G. Soberón-Chávez,et al.  RNA structures are involved in the thermoregulation of bacterial virulence-associated traits. , 2015, Trends in microbiology.

[8]  S. Gygi,et al.  An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis , 2015, Proceedings of the National Academy of Sciences.

[9]  D. Los,et al.  Mechanisms of High Temperature Resistance of Synechocystis sp. PCC 6803: An Impact of Histidine Kinase 34 , 2015, Life.

[10]  Ranjeet Singh,et al.  A transcriptional co‐repressor regulatory circuit controlling the heat‐shock response of Mycobacterium tuberculosis , 2014, Molecular microbiology.

[11]  V. Scarlato,et al.  The HrcA repressor is the thermosensor of the heat‐shock regulatory circuit in the human pathogen Helicobacter pylori , 2014, Molecular microbiology.

[12]  H. Rajaram,et al.  Cyanobacterial heat-shock response: role and regulation of molecular chaperones. , 2014, Microbiology.

[13]  C. Gross,et al.  Heat Shock Transcription Factor σ32 Co-opts the Signal Recognition Particle to Regulate Protein Homeostasis in E. coli , 2013, PLoS biology.

[14]  M. Kleerebezem,et al.  Transcriptome signatures of class I and III stress response deregulation in Lactobacillus plantarum reveal pleiotropic adaptation , 2013, Microbial Cell Factories.

[15]  H. de Reuse,et al.  Common themes and unique proteins for the uptake and trafficking of nickel, a metal essential for the virulence of Helicobacter pylori , 2013, Front. Cell. Infect. Microbiol..

[16]  E. Loh,et al.  Temperature triggers immune evasion by Neisseria meningitidis , 2013, Nature.

[17]  R. Sauer,et al.  Dual Molecular Signals Mediate the Bacterial Response to Outer-Membrane Stress , 2013, Science.

[18]  C. Georgopoulos,et al.  A Bacteriophage-Encoded J-Domain Protein Interacts with the DnaK/Hsp70 Chaperone and Stabilizes the Heat-Shock Factor σ32 of Escherichia coli , 2012, PLoS genetics.

[19]  L. Cowen,et al.  Thermal Control of Microbial Development and Virulence: Molecular Mechanisms of Microbial Temperature Sensing , 2012, mBio.

[20]  D. Roy,et al.  DnaK Dependence of the Mycobacterial Stress-Responsive Regulator HspR Is Mediated through Its Hydrophobic C-Terminal Tail , 2012, Journal of bacteriology.

[21]  M. Kanemori,et al.  Synergistic Binding of DnaJ and DnaK Chaperones to Heat Shock Transcription Factor σ32 Ensures Its Characteristic High Metabolic Instability , 2012, The Journal of Biological Chemistry.

[22]  F. Narberhaus,et al.  Bacterial RNA thermometers: molecular zippers and switches , 2012, Nature Reviews Microbiology.

[23]  Adam C. Wilson,et al.  A Chlamydia-Specific C-Terminal Region of the Stress Response Regulator HrcA Modulates Its Repressor Activity , 2011, Journal of bacteriology.

[24]  V. Scarlato,et al.  CbpA Acts as a Modulator of HspR Repressor DNA Binding Activity in Helicobacter pylori , 2011, Journal of bacteriology.

[25]  Harald Schwalbe,et al.  Modulation of the stability of the Salmonella fourU-type RNA thermometer , 2011, Nucleic acids research.

[26]  Brian Henderson,et al.  Bacterial Virulence in the Moonlight: Multitasking Bacterial Moonlighting Proteins Are Virulence Determinants in Infectious Disease , 2011, Infection and Immunity.

[27]  H. Schwalbe,et al.  Translation on demand by a simple RNA-based thermosensor , 2010, Nucleic acids research.

[28]  D. Zühlke,et al.  CtsR, the Gram‐positive master regulator of protein quality control, feels the heat , 2010, The EMBO journal.

[29]  G. Amore,et al.  Built Shallow to Maintain Homeostasis and Persistent Infection: Insight into the Transcriptional Regulatory Network of the Gastric Human Pathogen Helicobacter pylori , 2010, PLoS pathogens.

[30]  Aldert L. Zomer,et al.  Intertwinement of stress response regulons in Bifidobacterium breve UCC2003 , 2010, Gut microbes.

[31]  T. Msadek,et al.  Characterization of the CtsR Stress Response Regulon in Lactobacillus plantarum , 2009, Journal of bacteriology.

[32]  P. Lund,et al.  The hrcA and hspR regulons of Campylobacter jejuni. , 2010, Microbiology.

[33]  M. Ventura,et al.  An Interactive Regulatory Network Controls Stress Response in Bifidobacterium breve UCC2003 , 2009, Journal of bacteriology.

[34]  Torsten Waldminghaus,et al.  The Escherichia coli ibpA thermometer is comprised of stable and unstable structural elements , 2009, RNA biology.

[35]  P. Lund Multiple chaperonins in bacteria--why so many? , 2009, FEMS microbiology reviews.

[36]  K. Mechtler,et al.  McsB Is a Protein Arginine Kinase That Phosphorylates and Inhibits the Heat-Shock Regulator CtsR , 2009, Science.

[37]  C. Gross,et al.  Dissection of recognition determinants of Escherichia coli σ32 suggests a composite −10 region with an ‘extended −10’ motif and a core −10 element , 2009, Molecular microbiology.

[38]  M. Weichert,et al.  Intrinsic Thermal Sensing Controls Proteolysis of Yersinia Virulence Regulator RovA , 2009, PLoS pathogens.

[39]  G. Balázsi,et al.  Negative autoregulation linearizes the dose–response and suppresses the heterogeneity of gene expression , 2009, Proceedings of the National Academy of Sciences.

[40]  B. Nadratowska-Wesołowska,et al.  The P1 promoter of the Escherichia coli rpoH gene is utilized by sigma 70 -RNAP or sigma s -RNAP depending on growth phase. , 2009, FEMS microbiology letters.

[41]  M. Kleerebezem,et al.  The Lactobacillus plantarum ftsH Gene Is a Novel Member of the CtsR Stress Response Regulon , 2008, Journal of bacteriology.

[42]  Charles J. Dorman,et al.  Bacterial DNA topology and infectious disease , 2008, Nucleic acids research.

[43]  Jeffrey M Weinberg,et al.  Negative feedback. , 2009, Cutis.

[44]  F. Narberhaus,et al.  Microbial thermosensors , 2009, Cellular and Molecular Life Sciences.

[45]  N. Allenby,et al.  Development and application of versatile high density microarrays for genome-wide analysis of Streptomyces coelicolor: characterization of the HspR regulon , 2009, Genome Biology.

[46]  Sarah E. Ades,et al.  Regulation by destruction: design of the sigmaE envelope stress response. , 2008, Current opinion in microbiology.

[47]  P. Varmanen,et al.  ClpL is essential for induction of thermotolerance and is potentially part of the HrcA regulon in Lactobacillus gasseri , 2008, Proteomics.

[48]  S. D. Das Gupta,et al.  Modulation of DNA-binding activity of Mycobacterium tuberculosis HspR by chaperones. , 2008, Microbiology.

[49]  B. Ibelings,et al.  Sigma factor SigC is required for heat acclimation of the cyanobacterium Synechocystis sp. strain PCC 6803 , 2008, FEBS letters.

[50]  J. Puente,et al.  Thermosensing Coordinates a Cis-regulatory Module for Transcriptional Activation of the Intracellular Virulence System in Salmonella enterica Serovar Typhimurium* , 2007, Journal of Biological Chemistry.

[51]  C. Gross,et al.  Analysis of σ32 mutants defective in chaperone-mediated feedback control reveals unexpected complexity of the heat shock response , 2007, Proceedings of the National Academy of Sciences.

[52]  M. Wiedmann,et al.  Transcriptomic and Phenotypic Analyses Suggest a Network between the Transcriptional Regulators HrcA and σB in Listeria monocytogenes , 2007, Applied and Environmental Microbiology.

[53]  M. Wiedmann,et al.  Phenotypic and Transcriptomic Analyses Demonstrate Interactions between the Transcriptional Regulators CtsR and Sigma B in Listeria monocytogenes , 2007, Applied and Environmental Microbiology.

[54]  W. D. de Vos,et al.  The heat-shock response of Listeria monocytogenes comprises genes involved in heat shock, cell division, cell wall synthesis, and the SOS response. , 2007, Microbiology.

[55]  V. Scarlato,et al.  Transcriptional Regulation of Stress Response and Motility Functions in Helicobacter pylori Is Mediated by HspR and HrcA , 2007, Journal of bacteriology.

[56]  Torsten Waldminghaus,et al.  FourU: a novel type of RNA thermometer in Salmonella , 2007, Molecular microbiology.

[57]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[58]  Hitoshi Nakamoto,et al.  A novel light‐ and heat‐responsive regulation of the groE transcription in the absence of HrcA or CIRCE in cyanobacteria , 2007, FEBS letters.

[59]  M. Hecker,et al.  The tyrosine kinase McsB is a regulated adaptor protein for ClpCP , 2007, The EMBO journal.

[60]  R. Sauer,et al.  Inhibition of regulated proteolysis by RseB , 2007, Proceedings of the National Academy of Sciences.

[61]  V. Scarlato,et al.  Expression, purification and characterization of the membrane-associated HrcA repressor protein of Helicobacter pylori. , 2007, Protein expression and purification.

[62]  Jonathan Livny,et al.  Global Gene Expression and Phenotypic Analysis of a Vibrio cholerae rpoH Deletion Mutant , 2006, Journal of bacteriology.

[63]  T. Baker,et al.  Design principles of the proteolytic cascade governing the sigmaE-mediated envelope stress response in Escherichia coli: keys to graded, buffered, and rapid signal transduction. , 2007, Genes & development.

[64]  C. Gross,et al.  Analysis of sigma32 mutants defective in chaperone-mediated feedback control reveals unexpected complexity of the heat shock response. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[65]  J. Hoskins,et al.  Functional Analysis of CbpA, a DnaJ Homolog and Nucleoid-associated DNA-binding Protein* , 2006, Journal of Biological Chemistry.

[66]  Hong Li,et al.  The heat shock response in the cyanobacterium Synechocystis sp. Strain PCC 6803 and regulation of gene expression by HrcA and SigB , 2006, Archives of Microbiology.

[67]  Virgil A Rhodius,et al.  Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress. , 2006, Genes & development.

[68]  F. Narberhaus,et al.  Molecular basis for temperature sensing by an RNA thermometer , 2006, The EMBO journal.

[69]  S. Dhandayuthapani,et al.  Transcriptional Heat Shock Response in the Smallest Known Self-Replicating Cell, Mycoplasma genitalium , 2006, Journal of bacteriology.

[70]  John Doyle,et al.  Module-Based Analysis of Robustness Tradeoffs in the Heat Shock Response System , 2006, PLoS Comput. Biol..

[71]  I. Suzuki,et al.  Proteomic analysis of the heat shock response in Synechocystis PCC6803 and a thermally tolerant knockout strain lacking the histidine kinase 34 gene , 2006, Proteomics.

[72]  E. Tyystjärvi,et al.  The SigB σ factor mediates high‐temperature responses in the cyanobacterium Synechocystis sp. PCC6803 , 2006 .

[73]  C. Gross,et al.  Conserved and Variable Functions of the σE Stress Response in Related Genomes , 2005, PLoS biology.

[74]  K. Struhl,et al.  Extensive functional overlap between sigma factors in Escherichia coli. , 2006, Nature structural & molecular biology.

[75]  E. Tyystjärvi,et al.  The SigB sigma factor mediates high-temperature responses in the cyanobacterium Synechocystis sp. PCC6803. , 2006, FEBS letters.

[76]  L. Kremer,et al.  GroEL1: A Dedicated Chaperone Involved in Mycolic Acid Biosynthesis during Biofilm Formation in Mycobacteria , 2005, Cell.

[77]  J. Yates,et al.  UC Irvine UC Irvine Previously Published Works Title Chlamydial GroEL autoregulates its own expression through direct interactions with the HrcA repressor protein , 2005 .

[78]  D. Zühlke,et al.  A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis , 2005, The EMBO journal.

[79]  P. Dehaseth,et al.  Mutational Analysis of Escherichia coli Heat Shock Transcription Factor Sigma 32 Reveals Similarities with Sigma 70 in Recognition of the −35 Promoter Element and Differences in Promoter DNA Melting and −10 Recognition , 2005, Journal of bacteriology.

[80]  C. Grandvalet,et al.  CtsR Is the Master Regulator of Stress Response Gene Expression in Oenococcus oeni , 2005, Journal of bacteriology.

[81]  Sung-Hou Kim,et al.  Crystal structure of a heat-inducible transcriptional repressor HrcA from Thermotoga maritima: structural insight into DNA binding and dimerization. , 2005, Journal of molecular biology.

[82]  F. Narberhaus,et al.  Identification of a Turnover Element in Region 2.1 of Escherichia coli σ32 by a Bacterial One-Hybrid Approach , 2005, Journal of bacteriology.

[83]  Richard R. Burgess,et al.  The Global Transcriptional Response of Escherichia coli to Induced σ32 Protein Involves σ32 Regulon Activation Followed by Inactivation and Degradation of σ32 in Vivo* , 2005, Journal of Biological Chemistry.

[84]  E. Laskowska,et al.  The Small Heat Shock Protein IbpA of Escherichia coli Cooperates with IbpB in Stabilization of Thermally Aggregated Proteins in a Disaggregation Competent State* , 2005, Journal of Biological Chemistry.

[85]  P. Varmanen,et al.  Characterization of a Mobile clpL Gene from Lactobacillus rhamnosus , 2005, Applied and Environmental Microbiology.

[86]  B. Pearson,et al.  Diverse roles for HspR in Campylobacter jejuni revealed by the proteome, transcriptome and phenotypic characterization of an hspR mutant. , 2005, Microbiology.

[87]  Amy K. Schmid,et al.  HspR is a global negative regulator of heat shock gene expression in Deinococcus radiodurans , 2005, Molecular microbiology.

[88]  John C. Doyle,et al.  Surviving heat shock: control strategies for robustness and performance. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[89]  F. Ritossa A new puffing pattern induced by temperature shock and DNP in drosophila , 1962, Experientia.

[90]  R. Burgess,et al.  The global transcriptional response of Escherichia coli to induced sigma 32 protein involves sigma 32 regulon activation followed by inactivation and degradation of sigma 32 in vivo. , 2005, The Journal of biological chemistry.

[91]  Carol A Gross,et al.  A chaperone network controls the heat shock response in E. coli. , 2004, Genes & development.

[92]  C. Gross,et al.  Fine-tuning of the Escherichia coli sigmaE envelope stress response relies on multiple mechanisms to inhibit signal-independent proteolysis of the transmembrane anti-sigma factor, RseA. , 2004, Genes & development.

[93]  S. Gomes,et al.  Functional and Structural Analysis of HrcA Repressor Protein from Caulobacter crescentus , 2004, Journal of bacteriology.

[94]  J. Hoskins,et al.  CbpA, a DnaJ Homolog, Is a DnaK Co-chaperone, and Its Activity Is Modulated by CbpM*♦ , 2004, Journal of Biological Chemistry.

[95]  Adam C. Wilson,et al.  Stress Response Gene Regulation in Chlamydia Is Dependent on HrcA-CIRCE Interactions , 2004, Journal of bacteriology.

[96]  R. Rappuoli,et al.  Dual Control of Helicobacter pylori Heat Shock Gene Transcription by HspR and HrcA , 2004, Journal of bacteriology.

[97]  R. Burne,et al.  Transcriptional analysis of the groE and dnaK heat-shock operons of Enterococcus faecalis. , 2004, Research in microbiology.

[98]  M. Bott,et al.  clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor σH , 2004, Molecular microbiology.

[99]  T. Msadek,et al.  clpB, a Novel Member of the Listeria monocytogenes CtsR Regulon, Is Involved in Virulence but Not in General Stress Tolerance , 2004, Journal of bacteriology.

[100]  G. Klug,et al.  CIRCE is not involved in heat-dependent transcription of groESL but in stabilization of the mRNA 5'-end in Rhodobacter capsulatus. , 2004, Nucleic acids research.

[101]  C. Gualerzi,et al.  The virF promoter in Shigella: more than just a curved DNA stretch , 2004, Molecular microbiology.

[102]  Koreaki Ito,et al.  YaeL proteolysis of RseA is controlled by the PDZ domain of YaeL and a Gln‐rich region of RseA , 2003, The EMBO journal.

[103]  Emma Kreuger,et al.  Temperature-controlled Structural Alterations of an RNA Thermometer* , 2003, Journal of Biological Chemistry.

[104]  G. Bucca,et al.  Negative feedback regulation of dnaK, clpB and lon expression by the DnaK chaperone machine in Streptomyces coelicolor, identified by transcriptome and in vivo DnaK‐depletion analysis , 2003, Molecular microbiology.

[105]  Hitoshi Nakamoto,et al.  Targeted inactivation of the hrcA repressor gene in cyanobacteria , 2003, FEBS letters.

[106]  W. Schumann,et al.  Analysis of a DNA-binding motif of the Bacillus subtilis HrcA repressor protein. , 2003, FEMS microbiology letters.

[107]  R. Sauer,et al.  OMP Peptide Signals Initiate the Envelope-Stress Response by Activating DegS Protease via Relief of Inhibition Mediated by Its PDZ Domain , 2003, Cell.

[108]  R. Brunham,et al.  Molecular Analysis of the Multiple GroEL Proteins of Chlamydiae , 2003, Journal of bacteriology.

[109]  T. Msadek,et al.  Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other Gram‐positive bacteria , 2003, Molecular microbiology.

[110]  T. Msadek,et al.  clpP of Streptococcus salivarius Is a Novel Member of the Dually Regulated Class of Stress Response Genes in Gram-Positive Bacteria , 2003, Journal of bacteriology.

[111]  Kunihiko Watanabe,et al.  Identification of a Helix-Turn-Helix Motif of Bacillus thermoglucosidasius HrcA Essential for Binding to the CIRCE Element and Thermostability of the HrcA-CIRCE Complex, Indicating a Role as a Thermosensor , 2003, Journal of bacteriology.

[112]  W. Schumann The Bacillus subtilis heat shock stimulon , 2003, Cell stress & chaperones.

[113]  Adam C. Wilson,et al.  Functional Analysis of the Heat Shock Regulator HrcA of Chlamydia trachomatis , 2002, Journal of bacteriology.

[114]  U. Alon,et al.  Negative autoregulation speeds the response times of transcription networks. , 2002, Journal of molecular biology.

[115]  Lorenz Wernisch,et al.  Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. , 2002, Microbiology.

[116]  C. Gualerzi,et al.  Temperature- and H-NS-Dependent Regulation of a Plasmid-Encoded Virulence Operon Expressing Escherichia coli Hemolysin , 2002, Journal of bacteriology.

[117]  W. Schumann,et al.  Isolation and Analysis of Mutant Alleles of the Bacillus subtilis HrcA Repressor with Reduced Dependency on GroE Function* , 2002, The Journal of Biological Chemistry.

[118]  Koreaki Ito,et al.  YaeL (EcfE) activates the sigma(E) pathway of stress response through a site-2 cleavage of anti-sigma(E), RseA. , 2002, Genes & development.

[119]  R. Rappuoli,et al.  In vitro selection of high affinity HspR-binding sites within the genome of Helicobacter pylori. , 2002, Gene.

[120]  J. Helmann The extracytoplasmic function (ECF) sigma factors. , 2002, Advances in microbial physiology.

[121]  Per Brinch Hansen,et al.  Design principles , 2002 .

[122]  T. Msadek,et al.  Regulation of Streptococcus pneumoniae clp Genes and Their Role in Competence Development and Stress Survival , 2001, Journal of bacteriology.

[123]  H. Hennecke,et al.  A mRNA-based thermosensor controls expression of rhizobial heat shock genes. , 2001, Nucleic acids research.

[124]  D. Missiakas,et al.  Characterization of the Escherichia coliςE Regulon* , 2001, The Journal of Biological Chemistry.

[125]  D. Zühlke,et al.  Clp‐mediated proteolysis in Gram‐positive bacteria is autoregulated by the stability of a repressor , 2001, The EMBO journal.

[126]  G. Bucca,et al.  The HspR regulon of Streptomyces coelicolor: a role for the DnaK chaperone as a transcriptional co‐repressor† , 2000, Molecular microbiology.

[127]  G. Rapoport,et al.  The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37°C , 2000 .

[128]  F. Vogensen,et al.  ctsR of Lactococcus lactis encodes a negative regulator of clp gene expression. , 2000, Microbiology.

[129]  L. Serrano,et al.  Engineering stability in gene networks by autoregulation , 2000, Nature.

[130]  C. Grandvalet,et al.  The RheA repressor is the thermosensor of the HSP18 heat shock response in Streptomyces albus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[131]  T. Msadek,et al.  CtsR controls class III heat shock gene expression in the human pathogen Listeria monocytogenes , 2000, Molecular microbiology.

[132]  S. Rüdiger,et al.  Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB , 1999, The EMBO journal.

[133]  K. Nakahigashi,et al.  Differential and Independent Roles of a ς32 Homolog (RpoH) and an HrcA Repressor in the Heat Shock Response of Agrobacterium tumefaciens , 1999, Journal of bacteriology.

[134]  C. Gross,et al.  The interface of sigma with core RNA polymerase is extensive, conserved, and functionally specialized. , 1999, Genes & development.

[135]  V. Scarlato,et al.  The autoregulatory HspR repressor protein governs chaperone gene transcription in Helicobacter pylori , 1999, Molecular microbiology.

[136]  W. Hammes,et al.  Molecular characterisation of the dnaK operon of Lactobacillus sakei LTH681. , 1999, Systematic and applied microbiology.

[137]  O. Matsushita,et al.  Promoter upstream bent DNA activates the transcription of the Clostridium perfringens phospholipase C gene in a low temperature‐dependent manner , 1999, The EMBO journal.

[138]  M. Rose,et al.  ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis , 1999, Molecular microbiology.

[139]  Y. Kyōgoku,et al.  Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. , 1999, Genes & development.

[140]  M. Pallen RpoN‐dependent transcription of rpoH? , 1999, Molecular microbiology.

[141]  F. Narberhaus,et al.  Negative regulation of bacterial heat shock genes , 1999, Molecular microbiology.

[142]  V. de Crécy-Lagard,et al.  The ClpB ATPase of Streptomyces albus G belongs to the HspR heat shock regulon , 1999, Molecular microbiology.

[143]  G. Rapoport,et al.  CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram‐positive bacteria , 1999, Molecular microbiology.

[144]  G. Rapoport,et al.  RheA , the repressor of hsp 18 in Streptomyces albus , 1999 .

[145]  M. Hecker,et al.  The First Gene of the Bacillus subtilis clpC Operon,ctsR, Encodes a Negative Regulator of Its Own Operon and Other Class III Heat Shock Genes , 1998, Journal of bacteriology.

[146]  C. Gualerzi,et al.  Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature‐dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H‐NS , 1998, The EMBO journal.

[147]  Bernd Bukau,et al.  Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli , 1998, Molecular microbiology.

[148]  G. Rapoport,et al.  hrcA, Encoding the Repressor of the groELGenes in Streptomyces albus G, Is Associated with a SeconddnaJ Gene , 1998, Journal of bacteriology.

[149]  B. Kallipolitis,et al.  Transcription of rpoH, encoding the Escherichia coli heat‐shock regulator σ32, is negatively controlled by the cAMP‐CRP/CytR nucleoprotein complex , 1998, Molecular microbiology.

[150]  D. Missiakas,et al.  The extracytoplasmic function sigma factors: role and regulation , 1998, Molecular microbiology.

[151]  S. Engelmann,et al.  Nonnative Proteins Induce Expression of the Bacillus subtilis CIRCE Regulon , 1998, Journal of bacteriology.

[152]  M. Hecker,et al.  Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance , 1998, Molecular microbiology.

[153]  Araceli M. Huerta,et al.  From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[154]  H. Hennecke,et al.  A novel DNA element that controls bacterial heat shock gene expression , 1998, Molecular microbiology.

[155]  S. Engelmann,et al.  Thioredoxin Is an Essential Protein Induced by Multiple Stresses in Bacillus subtilis , 1998, Journal of bacteriology.

[156]  H. Yanagi,et al.  Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli , 1997, Journal of bacteriology.

[157]  G. Bucca,et al.  Regulation of the dnaK operon of Streptomyces coelicolor A3(2) is governed by HspR, an autoregulatory repressor protein , 1997, Journal of bacteriology.

[158]  A. Horwich,et al.  The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex , 1997, Nature.

[159]  G. Homuth,et al.  The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis , 1997 .

[160]  K. Berndt,et al.  A Proteinaceous Gene Regulatory Thermometer in Salmonella , 1997, Cell.

[161]  C. Georgopoulos,et al.  Modulation of the Escherichia coliσE (RpoE) heat‐shock transcription‐factor activity by the RseA, RseB and RseC proteins , 1997, Molecular microbiology.

[162]  M. Hecker,et al.  The Bacillus subtilis clpC operon encodes DNA repair and competence proteins. , 1997, Microbiology.

[163]  P. Forterre,et al.  DNA topology in hyperthermophilic archaea: reference states and their variation with growth phase, growth temperature, and temperature stresses , 1997, Molecular microbiology.

[164]  C. Grandvalet,et al.  Disruption of hspR, the repressor gene of the dnaK operon in Streptomyces albus G , 1997, Molecular microbiology.

[165]  J. Wells,et al.  Gram-Positive Bacteria , 1997, Biotechnology Intelligence Unit.

[166]  P. Servant,et al.  Heat induction of hsp18 gene expression in Streptomyces albus G: transcriptional and posttranscriptional regulation , 1996, Journal of bacteriology.

[167]  C. Georgopoulos,et al.  Identification and characterization of HsIV HsIU (ClpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. , 1996, The EMBO journal.

[168]  M. Żylicz,et al.  The Clp ATPases define a novel class of molecular chaperones , 1996, Molecular microbiology.

[169]  M. Hecker,et al.  Alternate promoters direct stress‐induced transcription of the Bacillus subtilis clpC operon , 1996, Molecular microbiology.

[170]  L. Shapiro,et al.  Identification of a Caulobacter crescentus operon encoding hrcA, involved in negatively regulating heat-inducible transcription, and the chaperone gene grpE , 1996, Journal of bacteriology.

[171]  H. Fischer,et al.  Two different mechanisms are involved in the heat‐shock regulation of chaperonin gene expression in Bradyrhizobium japonicum , 1996, Molecular microbiology.

[172]  S. Wong,et al.  Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK , 1995, Journal of bacteriology.

[173]  C. Nickerson,et al.  Role of curved DNA in binding of Escherichia coli RNA polymerase to promoters , 1995, Journal of bacteriology.

[174]  S. Wong,et al.  Regulation of groE expression in Bacillus subtilis: the involvement of the sigma A-like promoter and the roles of the inverted repeat sequence (CIRCE) , 1995, Journal of bacteriology.

[175]  G. Bucca,et al.  The dnaK operon of Streptomyces coelicolor encodes a novel heat‐shock protein which binds to the promoter region of the operon , 1995, Molecular microbiology.

[176]  S. Naitza,et al.  H-NS regulation of virulence gene expression in enteroinvasive Escherichia coli harboring the virulence plasmid integrated into the host chromosome , 1995, Journal of bacteriology.

[177]  H. Mori,et al.  Escherichia coli FtsH is a membrane‐bound, ATP‐dependent protease which degrades the heat‐shock transcription factor sigma 32. , 1995, The EMBO journal.

[178]  P. Bouloc,et al.  Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[179]  W. Schumann,et al.  Isolation and analysis of mutants of the dnaK operon of Bacillus subtilis , 1995, Molecular microbiology.

[180]  A. Kumar,et al.  A hybrid sigma subunit directs RNA polymerase to a hybrid promoter in Escherichia coli. , 1995, Journal of molecular biology.

[181]  H. Fischer Genetic regulation of nitrogen fixation in rhizobia. , 1994, Microbiological reviews.

[182]  H. Mori,et al.  Effects of reduced levels of GroE chaperones on protein metabolism: enhanced synthesis of heat shock proteins during steady-state growth of Escherichia coli , 1994, Journal of bacteriology.

[183]  C. Liao,et al.  The response of a Bacillus subtilis temperature-sensitive sigA mutant to heat stress , 1994, Journal of bacteriology.

[184]  W. Schumann,et al.  CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis , 1994, Journal of bacteriology.

[185]  C. Branlant,et al.  The Escherichia coli gapA gene is transcribed by the vegetative RNA polymerase holoenzyme E sigma 70 and by the heat shock RNA polymerase E sigma 32 , 1994, Journal of bacteriology.

[186]  T. Donohue,et al.  The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. , 1993, Genes & development.

[187]  Hirotada Mori,et al.  Heat induction of θ32 synthesis mediated by mRNA secondary structure: a primary step of the heat shock response in Escherichia coli , 1993 .

[188]  R. Ellis,et al.  Chaperonin nomenclature , 1993, Molecular microbiology.

[189]  R. Gourse,et al.  Transcription of the Escherichia coli rrnB P1 promoter by the heat shock RNA polymerase (E sigma 32) in vitro , 1993, Journal of bacteriology.

[190]  H Mori,et al.  Heat induction of sigma 32 synthesis mediated by mRNA secondary structure: a primary step of the heat shock response in Escherichia coli. , 1993, Nucleic acids research.

[191]  M. Hecker,et al.  Cloning, sequencing, mapping, and transcriptional analysis of the groESL operon from Bacillus subtilis , 1992, Journal of bacteriology.

[192]  Ming Li,et al.  Cloning and characterization of the groESL operon from Bacillus subtilis , 1992, Journal of bacteriology.

[193]  H. Bujard,et al.  Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor σ 32 , 1992, Cell.

[194]  M. Hecker,et al.  Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtilis , 1992, Journal of bacteriology.

[195]  T. Galitski,et al.  The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the sigma 32 transcription factor. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[196]  T. Yura,et al.  Interplay of two cis-acting mRNA regions in translational control of sigma 32 synthesis during the heat shock response of Escherichia coli. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[197]  C. Thompson,et al.  Characterization of the groEL-like genes in Streptomyces albus , 1991, Journal of bacteriology.

[198]  D. Young,et al.  Heat shock proteins and antigens of Mycobacterium tuberculosis , 1991, Infection and immunity.

[199]  L. Hsieh,et al.  Bacterial DNA supercoiling and [ATP]/[ADP]. Changes associated with a transition to anaerobic growth. , 1991, Journal of molecular biology.

[200]  C. Gross,et al.  Translational regulation of sigma 32 synthesis: requirement for an internal control element , 1991, Journal of bacteriology.

[201]  C. Gross,et al.  DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. , 1990, Genes & development.

[202]  J. Erickson,et al.  Transcriptional regulation of the heat shock regulatory gene rpoH in Escherichia coli: involvement of a novel catabolite-sensitive promoter , 1990, Journal of bacteriology.

[203]  C. Gross,et al.  Identification of the sigma E subunit of Escherichia coli RNA polymerase: a second alternate sigma factor involved in high-temperature gene expression. , 1989, Genes & development.

[204]  J. Kaguni,et al.  A novel sigma factor is involved in expression of the rpoH gene of Escherichia coli , 1989, Journal of bacteriology.

[205]  J. Kaguni,et al.  dnaA protein regulates transcriptions of the rpoH gene of Escherichia coli. , 1989, The Journal of biological chemistry.

[206]  A. Kropinski,et al.  Heat shock response of Pseudomonas aeruginosa , 1988, Journal of bacteriology.

[207]  Carol A. Gross,et al.  The heat shock response of E. coli is regulated by changes in the concentration of σ32 , 1987, Nature.

[208]  F. Neidhardt,et al.  Regulation of the promoters and transcripts of rpoH, the Escherichia coli heat shock regulatory gene. , 1987, Genes & development.

[209]  N. Thompson,et al.  Studies of the role of the Escherichia coli heat shock regulatory protein sigma 32 by the use of monoclonal antibodies. , 1987, The Journal of biological chemistry.

[210]  A. Grossman,et al.  Sigma 32 synthesis can regulate the synthesis of heat shock proteins in Escherichia coli. , 1987, Genes & development.

[211]  C. Gross,et al.  The heat shock response of E. coli is regulated by changes in the concentration of sigma 32. , 1987, Nature.

[212]  M. Chamberlin,et al.  Bacillus subtilis sigma 28 and Escherichia coli sigma 32 (htpR) are minor sigma factors that display an overlapping promoter specificity. , 1985, The Journal of biological chemistry.

[213]  A. Grossman,et al.  The htpR gene product of E. coli is a sigma factor for heat-shock promoters , 1984, Cell.

[214]  F. Neidhardt,et al.  Nucleotide sequence of the heat shock regulatory gene of E. coli suggests its protein product may be a transcription factor , 1984, Cell.

[215]  D. Oh,et al.  Production of l-Ribose and Its Application in the Bacillus subtilis Mannose-6-Phosphate Isomerase from Substrate Specificity of a , 2009 .

[216]  T. Takano,et al.  Involvement of a bacterial factor in morphogenesis of bacteriophage capsid. , 1972, Nature: New biology.

[217]  W. Wood,et al.  Role of the host cell in bacteriophage morphogenesis: effects of a bacterial mutation on T4 head assembly. , 1972, Nature: New biology.