Cluster algebras

Cluster algebras were conceived by Fomin and Zelevinsky (1) in the spring of 2000 as a tool for studying dual canonical bases and total positivity in semisimple Lie groups. However, the theory of cluster algebras has since taken on a life of its own, as connections and applications have been discovered in diverse areas of mathematics, including representation theory of quivers and finite dimensional algebras, cf., for example, refs. 2⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓–15; Poisson geometry (16⇓⇓–19); Teichmuller theory (20⇓⇓⇓–24); string theory (25⇓⇓⇓⇓⇓–31); discrete dynamical systems and integrability (6, 32⇓⇓⇓⇓⇓–38); and combinatorics (39⇓⇓⇓⇓⇓⇓⇓–47). Quite remarkably, cluster algebras provide a unifying algebraic and combinatorial framework for a wide variety of phenomena in these and other settings. We refer the reader to the survey papers (36, 48⇓⇓⇓⇓–53) and to the cluster algebras portal (www.math.lsa.umich.edu/~fomin/cluster.html) for various introductions to cluster algebras and their links with other subjects in mathematics (and physics). In brief, a cluster algebra A of rank k is a subring of an ambient field ℱ of rational functions in k variables, say x 1, …, x k . Unlike most commutative rings, a cluster algebra is not presented at the outset via a complete set of generators and relations. Instead, from the data of the initial seed — which includes the k initial cluster variables x 1, …, x k , plus an exchange matrix — one uses an iterative procedure called “mutation” to produce the rest of the cluster variables. In particular, each new cluster … [↵][1]1To whom correspondence should be addressed. Email: williams{at}math.berkeley.edu. [1]: #xref-corresp-1-1

[1]  G. Moore,et al.  Wall-crossing, Hitchin Systems, and the WKB Approximation , 2009, 0907.3987.

[2]  R. Kedem Q-systems as cluster algebras , 2007, 0712.2695.

[3]  A. Vainshtein,et al.  Cremmer–Gervais cluster structure on SLn , 2013, Proceedings of the National Academy of Sciences.

[4]  Idun Reiten,et al.  CLUSTER MUTATION VIA QUIVER REPRESENTATIONS , 2004 .

[5]  Janice L. Malouf An integer sequence from a rational recursion , 1992, Discret. Math..

[6]  S. Fomin,et al.  Cluster algebras II: Finite type classification , 2002, math/0208229.

[7]  Sergey Fomin,et al.  Polytopal Realizations of Generalized Associahedra , 2002, Canadian Mathematical Bulletin.

[8]  G. Moore,et al.  Four-Dimensional Wall-Crossing via Three-Dimensional Field Theory , 2008, 0807.4723.

[9]  Tilting theory and cluster combinatorics , 2004, math/0402054.

[10]  Cluster ensembles, quantization and the dilogarithm , 2003, math/0311245.

[11]  C. Vafa,et al.  T-branes and monodromy , 2010, 1010.5780.

[12]  Y. Kodama,et al.  KP solitons, total positivity, and cluster algebras , 2011, Proceedings of the National Academy of Sciences.

[13]  A. Zelevinsky,et al.  Greedy bases in rank 2 quantum cluster algebras , 2014, Proceedings of the National Academy of Sciences.

[14]  C. Vafa,et al.  BPS Quivers and Spectra of Complete N=2 Quantum Field Theories , 2011 .

[15]  Moduli spaces of local systems and higher Teichmüller theory , 2003, math/0311149.

[16]  S. Fomin,et al.  Webs on surfaces, rings of invariants, and clusters , 2013, Proceedings of the National Academy of Sciences.

[17]  Cluster Algebras and Poisson Geometry , 2002, math/0208033.

[18]  N. Reshetikhin,et al.  Representations of Yangians and multiplicities of occurrence of the irreducible components of the tensor product of representations of simple Lie algebras , 1990 .

[19]  Sergey Fomin,et al.  Generalized cluster complexes and Coxeter combinatorics , 2005, math/0505085.

[20]  R. Kedem,et al.  Q-systems as Cluster Algebras II: Cartan Matrix of Finite Type and the Polynomial Property , 2008, 0803.0362.

[21]  A. Zelevinsky,et al.  Quantum cluster algebras , 2004, math/0404446.

[22]  R. Penner The decorated Teichmüller space of punctured surfaces , 1987 .

[23]  The F-triangle of the Generalised Cluster Complex , 2005, math/0509063.

[24]  D. Thurston Positive basis for surface skein algebras , 2013, Proceedings of the National Academy of Sciences.

[25]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[26]  B. Keller The periodicity conjecture for pairs of Dynkin diagrams , 2010, 1001.1531.

[27]  K. Goodearl,et al.  Quantum cluster algebras and quantum nilpotent algebras , 2013, Proceedings of the National Academy of Sciences.

[28]  M. Auslander,et al.  Almost split sequences in subcategories , 1981 .

[29]  George Lusztig,et al.  Canonical bases arising from quantized enveloping algebras , 1990 .

[30]  Sergey Fomin,et al.  Cluster algebras III: Upper bounds and double Bruhat cells , 2003 .

[31]  Cluster Ensembles, Quantization and the Dilogarithm II: The Intertwiner , 2007, math/0702398.

[32]  J. Weyman,et al.  Quivers with potentials and their representations I: Mutations , 2007, 0704.0649.

[33]  J. Suzuki,et al.  Periodicities of T-systems and Y-systems , 2008, Nagoya Mathematical Journal.

[34]  L. Williams,et al.  Positivity for cluster algebras from surfaces , 2009, 0906.0748.

[35]  Rigid modules over preprojective algebras , 2005, math/0503324.

[36]  A. A. Belavin,et al.  Solutions of the classical Yang - Baxter equation for simple Lie algebras , 1982 .

[37]  Li Li,et al.  Greedy elements in rank 2 cluster algebras , 2012, 1208.2391.

[38]  Sergey Fomin,et al.  The Laurent Phenomenon , 2002, Adv. Appl. Math..

[39]  Cluster algebras as Hall algebras of quiver representations , 2004, math/0410187.

[40]  B. Leclerc,et al.  Cluster algebras and quantum affine algebras , 2009, 0903.1452.

[41]  Pierre-Guy Plamondon Cluster algebras via cluster categories with infinite-dimensional morphism spaces , 2010, Compositio Mathematica.

[42]  FROM DOMINOES TO HEXAGONS , 2004, math/0405482.

[43]  H. Thomas,et al.  Noncrossing partitions and representations of quivers , 2006, Compositio Mathematica.

[44]  Gregg Musiker A Graph Theoretic Expansion Formula for Cluster Algebras of Classical Type , 2007, 0710.3574.

[45]  Claire Amiot Cluster categories for algebras of global dimension 2 and quivers with potential , 2008, 0805.1035.

[46]  various Current Developments in Mathematics , 2008 .

[47]  Anatol N. Kirillov Dilogarithm identities , 1994 .

[48]  J. Weyman,et al.  Quivers with potentials and their representations II: Applications to cluster algebras , 2009, 0904.0676.

[49]  A. Varchenko The complex exponent of a singularity does not change along strataµ = const , 1982 .

[50]  Ralf Schiffler A Cluster Expansion Formula (An case) , 2008, Electron. J. Comb..

[52]  On the properties of the exchange graph of a cluster algebra , 2007, math/0703151.

[53]  C. Geiss,et al.  Partial flag varieties and preprojective algebras , 2006, math/0609138.

[54]  Ralf Schiffler,et al.  On cluster algebras arising from unpunctured surfaces II , 2008, 0809.2593.

[55]  Sergey Fomin,et al.  Cluster algebras and triangulated surfaces. Part I: Cluster complexes , 2006 .

[56]  Tomoki Nakanishi,et al.  T-systems and Y-systems in integrable systems , 2010, 1010.1344.

[57]  Alek Vainshtein,et al.  Cluster algebras and Weil-Petersson forms , 2003 .

[58]  B. Keller,et al.  From triangulated categories to cluster algebras , 2005, math/0506018.

[59]  Osamu Iyama,et al.  Introduction to τ-tilting theory , 2013, Proceedings of the National Academy of Sciences.

[60]  R. Penner,et al.  On Quantizing Teichmüller and Thurston theories , 2004, math/0403247.

[61]  A. Neitzke Cluster-like coordinates in supersymmetric quantum field theory , 2014, Proceedings of the National Academy of Sciences.

[62]  Lauren K. Williams,et al.  Cluster algebras: an introduction , 2012, 1212.6263.

[63]  R. Kashaev Quantization of Teichmüller Spaces and the Quantum Dilogarithm , 1997, q-alg/9705021.

[64]  J. Scott Grassmannians and Cluster Algebras , 2003, math/0311148.

[65]  S. Fomin,et al.  Cluster algebras I: Foundations , 2001, math/0104151.

[66]  C. Geiss,et al.  Semicanonical bases and preprojective algebras , 2004, math/0402448.

[67]  A. Hone Laurent Polynomials and Superintegrable Maps , 2007, math/0702280.

[68]  S. Fomin,et al.  Y-systems and generalized associahedra , 2001, hep-th/0111053.

[69]  Andrei Zelevinsky,et al.  Semicanonical Basis Generators of the Cluster Algebra of Type A1(1) , 2006, Electronic Journal of Combinatorics.

[70]  The quantum dilogarithm and representations of quantum cluster varieties , 2007, math/0702397.

[71]  Thermodynamic Bethe Ansatz and Dilogarithm Identities I , 1995, hep-th/9506215.

[72]  S. D. Chatterji Proceedings of the International Congress of Mathematicians , 1995 .

[73]  C. Vafa,et al.  BPS Quivers and Spectra of Complete $${\mathcal{N} = 2}$$N=2 Quantum Field Theories , 2011, 1109.4941.

[74]  B. Keller,et al.  Linear independence of cluster monomials for skew-symmetric cluster algebras , 2012, Compositio Mathematica.

[75]  C. Vafa,et al.  Classification of Complete N = 2 Supersymmetric Theories in 4 Dimensions , 2011, 1103.5832.

[76]  Andrei Zelevinsky,et al.  Generalized associahedra via quiver representations , 2002, math/0205152.

[77]  Cluster algebras: Notes for the CDM-03 conference , 2003, math/0311493.