A Method for Multiple Periodic Factor Prediction Problems Using Complex Fuzzy Sets

Multiple periodic factor prediction (MPFP) problems exist widely in multisensor data fusion applications. Development of an effective prediction method should integrate information for multiple periodically changing factors. Because the uncertainty and periodicity coexist in the information used, the prediction method should be able to handle them simultaneously. In this study, complex fuzzy sets are used to represent the information with uncertainty and periodicity. A product-sum aggregation operator (PSAO) is developed for a set of complex fuzzy sets, which is used to integrate information with uncertainty and periodicity, and a PSAO-based prediction (PSAOP) method is then proposed to generate a solution of MPFP problems. This study illustrates the details of the PSAOP method through two real applications in annual sunspot number prediction and bushfire danger rating prediction. Experiments indicate that the proposed PSAOP method effectively handles the uncertainty and periodicity in the information of multiple periodic factors simultaneously and can generate accurate predictions for MPFP problems.

[1]  Gebhard Kirchgässner,et al.  Introduction to Modern Time Series Analysis , 2007 .

[2]  Shyi-Ming Chen,et al.  Temperature prediction using fuzzy time series , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[3]  Witold Pedrycz,et al.  Fuzzy prediction architecture using recurrent neural networks , 2009, Neurocomputing.

[4]  Zhang Guang-Quan,et al.  Fuzzy continuous function and its properties , 1991 .

[5]  Witold Pedrycz,et al.  Numerical and Linguistic Prediction of Time Series With the Use of Fuzzy Cognitive Maps , 2008, IEEE Transactions on Fuzzy Systems.

[6]  K. Paul Yoon,et al.  A probabilistic approach to rank complex fuzzy numbers , 1996, Fuzzy Sets Syst..

[7]  Philip Hans Franses,et al.  Periodic Time Series Models , 1996 .

[8]  A. Kandel,et al.  Linguistic coordinate transformations for complex fuzzy sets , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[9]  Zhang Guang-quan Fuzzy limit theory of fuzzy complex numbers , 1992 .

[10]  J. Buckley Fuzzy complex analysis II: integration , 1992 .

[11]  Chunshien Li,et al.  Complex Fuzzy Computing to Time Series Prediction A Multi-Swarm PSO Learning Approach , 2011, ACIIDS.

[12]  E. Karsak,et al.  Fuzzy multi-criteria decision-making procedure for evaluating advanced manufacturing system investments , 2001 .

[13]  Abraham Kandel,et al.  Complex fuzzy sets , 2002, IEEE Trans. Fuzzy Syst..

[14]  B. Chissom,et al.  Fuzzy time series and its models , 1993 .

[15]  Preeti Bajaj,et al.  Implementation of Complex Fuzzy Logic Modules with VLSI Approach , 2008 .

[16]  G. Umgiesser,et al.  The role of ambiguity in the evaluation of the net benefits of the MOSE system in the Venice lagoon , 2010 .

[17]  Petr Hájek,et al.  Uncertain information processing in expert systems , 1992 .

[18]  J. Buckley Fuzzy complex numbers , 1989 .

[19]  Abraham Kandel,et al.  A new interpretation of complex membership grade , 2011, Int. J. Intell. Syst..

[20]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[21]  M. Tahar Kechadi,et al.  A new feature set with new window techniques for customer churn prediction in land-line telecommunications , 2010, Expert Syst. Appl..

[22]  James Llinas,et al.  Revisiting the JDL Data Fusion Model II , 2004 .

[23]  Vladik Kreinovich,et al.  Complex fuzzy sets: towards new foundations , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[24]  J. Razmi,et al.  Forecasting electricity consumption by clustering data in order to decline the periodic variable’s affects and simplification the pattern , 2009 .

[25]  Adiel Teixeira de Almeida,et al.  A multi-criteria decision model to determine inspection intervals of condition monitoring based on delay time analysis , 2009, Reliab. Eng. Syst. Saf..

[26]  Shyi-Ming Chen,et al.  Handling forecasting problems based on two-factors high-order fuzzy time series , 2006, IEEE Trans. Fuzzy Syst..

[27]  Andrew Starr,et al.  A Review of data fusion models and architectures: towards engineering guidelines , 2005, Neural Computing & Applications.

[28]  Scott Dick,et al.  An on-line learning algorithm for complex fuzzy logic , 2010, International Conference on Fuzzy Systems.

[29]  Ozden Ustun,et al.  Multi-period lot-sizing with supplier selection using achievement scalarizing functions , 2008, Comput. Ind. Eng..

[30]  Alan N. Steinberg,et al.  Revisions to the JDL data fusion model , 1999, Defense, Security, and Sensing.

[31]  Rob J Hyndman,et al.  25 years of time series forecasting , 2006 .

[32]  Chunshien Li,et al.  Complex-Fuzzy Adaptive Image Restoration - An Artificial-Bee-Colony-Based Learning Approach , 2011, ACIIDS.

[33]  Kai-Yuan Cai,et al.  Operation Properties and δ-Equalities of Complex Fuzzy Sets , 2011 .

[34]  Christopher Lucas,et al.  On developing a historical fire weather data-set for Australia , 2010 .

[35]  Abraham Kandel,et al.  Complex fuzzy logic , 2003, IEEE Trans. Fuzzy Syst..

[36]  Vladik Kreinovich,et al.  On the possibility of using complex values in fuzzy logic for representing inconsistencies , 1998, Int. J. Intell. Syst..

[37]  James Llinas,et al.  An introduction to multisensor data fusion , 1997, Proc. IEEE.

[38]  H. B. Mitchell,et al.  Multi-Sensor Data Fusion: An Introduction , 2007 .

[39]  Scott Dick,et al.  Toward complex fuzzy logic , 2005, IEEE Transactions on Fuzzy Systems.

[40]  Ozden Ustun,et al.  An integrated multi-objective decision-making process for multi-period lot-sizing with supplier selection , 2008 .

[41]  Bogdan C. Bichescu,et al.  A numerical analysis of supply chain performance under split decision rights , 2009 .

[42]  J. Buckley,et al.  Fuzzy complex analysis I: differentiation , 1991 .

[43]  Dong Qiu,et al.  Notes on fuzzy complex analysis , 2009, Fuzzy Sets Syst..

[44]  Jean-Luc Marichal,et al.  Aggregation operators for multicriteria decision aid , 1998 .

[45]  Rob J. Hyndman,et al.  Nonparametric time series forecasting with dynamic updating , 2011, Math. Comput. Simul..

[46]  Tharam S. Dillon,et al.  Operation properties and delta-equalities of complex fuzzy sets , 2009, Int. J. Approx. Reason..

[47]  Scott Dick,et al.  ANCFIS: A Neurofuzzy Architecture Employing Complex Fuzzy Sets , 2011, IEEE Transactions on Fuzzy Systems.