Controlling the Photon Number Coherence of Solid-state Quantum Light Sources for Quantum Cryptography

Quantum communication networks rely on quantum cryptographic protocols including quantum key distribution (QKD) using single photons. A critical element regarding the security of QKD protocols is the photon number coherence (PNC), i.e. the phase relation between the zero and one-photon Fock state, which critically depends on the excitation scheme. Thus, to obtain flying qubits with the desired properties, optimal pumping schemes for quantum emitters need to be selected. Semiconductor quantum dots generate on-demand single photons with high purity and indistinguishability. Exploiting two-photon excitation of a quantum dot combined with a stimulation pulse, we demonstrate the generation of high-quality single photons with a controllable degree of PNC. Our approach provides a viable route toward secure communication in quantum networks.

[1]  D. Deppe,et al.  Notch-filtered Adiabatic Rapid Passage for Optically-Driven Quantum Light Sources , 2022, APL Photonics.

[2]  Manuel B. Santos,et al.  Quantum Oblivious Transfer: A Short Review , 2022, Entropy.

[3]  J. C. Loredo,et al.  Enhancing quantum cryptography with quantum dot single-photon sources , 2022, npj Quantum Information.

[4]  S. F. Covre da Silva,et al.  Fast and efficient demultiplexing of single photons from a quantum dot with resonantly enhanced electro-optic modulators , 2022, APL Photonics.

[5]  S. F. Covre da Silva,et al.  SUPER Scheme in Action: Experimental Demonstration of Red-Detuned Excitation of a Quantum Emitter , 2022, Nano letters.

[6]  T. Heindel,et al.  Swing-Up of Quantum Emitter Population Using Detuned Pulses , 2021, PRX Quantum.

[7]  A. Sørensen,et al.  Violation of Bell's inequality with quantum-dot single-photon sources , 2021, Physical Review A.

[8]  Jake Iles-Smith,et al.  Tailoring solid-state single-photon sources with stimulated emissions , 2021, Nature Nanotechnology.

[9]  Fengmei M. Liu,et al.  Double-Pulse Generation of Indistinguishable Single Photons with Optically Controlled Polarization. , 2021, Nano letters.

[10]  S. Manna,et al.  GaAs quantum dots grown by droplet etching epitaxy as quantum light sources , 2021, Applied Physics Letters.

[11]  T. Heindel,et al.  Quantum Communication Using Semiconductor Quantum Dots , 2021, Advanced Quantum Technologies.

[12]  K. Jöns,et al.  Stimulated Generation of Indistinguishable Single Photons from a Quantum Ladder System. , 2021, Physical review letters.

[13]  C. Spinnler,et al.  Quantum Interference of Identical Photons from Remote GaAs Quantum Dots , 2021, 2023 IEEE Photonics Conference (IPC).

[14]  J. C. Loredo,et al.  Photon-number entanglement generated by sequential excitation of a two-level atom , 2021, Nature Photonics.

[15]  V. M. Axt,et al.  Accuracy of the Quantum Regression Theorem for Photon Emission from a Quantum Dot. , 2021, Physical review letters.

[16]  S. F. Covre da Silva,et al.  Crux of Using the Cascaded Emission of a Three-Level Quantum Ladder System to Generate Indistinguishable Photons. , 2020, Physical review letters.

[17]  B. Gerardot,et al.  Coherent Dynamics in Quantum Emitters under Dichromatic Excitation. , 2020, Physical review letters.

[18]  S. F. Covre da Silva,et al.  Quantum cryptography with highly entangled photons from semiconductor quantum dots , 2020, Science Advances.

[19]  A. Wieck,et al.  A bright and fast source of coherent single photons , 2020, Nature Nanotechnology.

[20]  Priya,et al.  Bright Polarized Single-Photon Source Based on a Linear Dipole. , 2020, Physical review letters.

[21]  A. Wieck,et al.  Scalable integrated single-photon source , 2020, Science Advances.

[22]  J. S. Shaari,et al.  Advances in Quantum Cryptography , 2019, 1906.01645.

[23]  D. Reiter,et al.  A review on optical excitation of semiconductor quantum dots under the influence of phonons , 2019, Semiconductor Science and Technology.

[24]  V. M. Axt,et al.  Emission-Frequency Separated High Quality Single-Photon Sources Enabled by Phonons. , 2019, Physical review letters.

[25]  Peter Michler,et al.  Highly indistinguishable single photons from incoherently excited quantum dots , 2019, Physical Review B.

[26]  I. Sagnes,et al.  Generation of non-classical light in a photon-number superposition , 2018, Nature Photonics.

[27]  J. F. Dynes,et al.  Overcoming the rate–distance limit of quantum key distribution without quantum repeaters , 2018, Nature.

[28]  N. Spagnolo,et al.  Photonic quantum information processing: a review , 2018, Reports on progress in physics. Physical Society.

[29]  Shuo Sun,et al.  Quantum dot single-photon sources with ultra-low multi-photon probability , 2018, npj Quantum Information.

[30]  Iordanis Kerenidis,et al.  Experimental investigation of practical unforgeable quantum money , 2017, 1705.01428.

[31]  V. M. Axt,et al.  Nonlinear cavity feeding and unconventional photon statistics in solid-state cavity QED revealed by many-level real-time path-integral calculations , 2017, 1704.03347.

[32]  O. Schmidt,et al.  Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots , 2016, Nature Communications.

[33]  V. M. Axt,et al.  Path-integral description of combined Hamiltonian and non-Hamiltonian dynamics in quantum dissipative systems , 2016, 1607.00222.

[34]  Atsushi Okamoto,et al.  Evaluation of the phase randomness of a light source in quantum-key-distribution systems with an attenuated laser , 2014, 1407.1588.

[35]  Feihu Xu,et al.  Concise security bounds for practical decoy-state quantum key distribution , 2013, 1311.7129.

[36]  E. Diamanti,et al.  Experimental plug and play quantum coin flipping , 2013, Nature Communications.

[37]  Jian-Wei Pan,et al.  Source attack of decoy-state quantum key distribution using phase information , 2013, 1304.2541.

[38]  G. Weihs,et al.  Deterministic photon pairs and coherent optical control of a single quantum dot. , 2012, Physical review letters.

[39]  S. Wehner,et al.  Experimental implementation of bit commitment in the noisy-storage model , 2012, Nature Communications.

[40]  Liang Jiang,et al.  Unforgeable noise-tolerant quantum tokens , 2011, Proceedings of the National Academy of Sciences.

[41]  Gilles Brassard,et al.  Experimental loss-tolerant quantum coin flipping , 2011, Nature communications.

[42]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[43]  K. Sakoda,et al.  Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots , 2010, 1006.0347.

[44]  F. Kschischang,et al.  Roadmap of optical communications , 2015, 1507.05157.

[45]  J. Preskill,et al.  Security of quantum key distribution using weak coherent states with nonrandom phases , 2006, Quantum Inf. Comput..

[46]  M. Bichler,et al.  Two-photon Rabi oscillations in a single In x Ga 1 − x As ∕ Ga As quantum dot , 2006 .

[47]  M. S. Skolnick,et al.  Individual neutral and chargedInxGa1−xAs−GaAsquantum dots with strong in-plane optical anisotropy , 2005 .

[48]  F. Henneberger,et al.  Stimulated emission from the biexciton in a single self-assembled II-VI quantum dot. , 2005, Physical review letters.

[49]  J. Preskill,et al.  Phase randomization improves the security of quantum key distribution , 2005, quant-ph/0504209.

[50]  Xiang‐Bin Wang,et al.  Beating the photon-number-splitting attack in practical quantum cryptography. , 2004, Physical review letters.

[51]  Marco Lucamarini,et al.  Secure deterministic communication without entanglement. , 2004, Physical review letters.

[52]  P. Machnikowski,et al.  Resonant nature of phonon-induced damping of Rabi oscillations in quantum dots , 2003, cond-mat/0305165.

[53]  John Preskill,et al.  Security of quantum key distribution with imperfect devices , 2002, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[54]  V. Scarani,et al.  Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. , 2002, Physical review letters.

[55]  L. Marsal,et al.  Acoustic phonon broadening mechanism in single quantum dot emission , 2001 .

[56]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[57]  D. Bruß Optimal Eavesdropping in Quantum Cryptography with Six States , 1998, quant-ph/9805019.

[58]  H. Weinfurter,et al.  Experimental Entanglement Swapping: Entangling Photons That Never Interacted , 1998 .

[59]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[60]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[61]  Bing Qi,et al.  Experimental quantum key distribution with active phase randomization , 2007, 2007 Quantum Electronics and Laser Science Conference.