Theoretical study of the neutral decomposition of SF6 in the presence of H2O and O2 in discharges in power equipment

[1]  Xiaohua Wang,et al.  Investigation on Propagation Characteristics of PD-induced Electromagnetic Wave in T-Shaped GIS Based on FDTD Method , 2014, IEICE Trans. Electron..

[2]  X. Zhang,et al.  Crystal structure of ClF(4)(+)SbF(6)(-), normal coordinate analyses of ClF(4)(+), BrF(4)(+), IF(4)(+), SF(4), SeF(4), and TeF(4), and simple method for calculating the effects of fluorine bridging on the structure and vibrational spectra of ions in a strongly interacting ionic solid. , 2001, Journal of the American Chemical Society.

[3]  W. Ding,et al.  Factors affecting PD detection in GIS using a carbon nanotube gas sensor , 2007, IEEE Transactions on Dielectrics and Electrical Insulation.

[4]  Jan M. L. Martin,et al.  Basis set convergence and performance of density functional theory including exact exchange contributions for geometries and harmonic frequencies , 1995 .

[5]  J. Casanovas,et al.  Chemical kinetics modelling of a decaying SF6 arc plasma in the presence of a solid organic insulator, copper, oxygen and water , 2000 .

[6]  Jan M. L. Martin,et al.  On the structure and vibrational frequencies of C24 , 1996 .

[7]  N. Jaidane,et al.  Kinetic study of the reaction H2O2 + H → H2O + OH by ab initio and density functional theory calculations , 2006 .

[8]  L. G. Christophorou,et al.  Neutral Decomposition Products in Spark Breakdown of SF6 , 1986, IEEE Transactions on Electrical Insulation.

[9]  I. Hargittai,et al.  Electron diffraction study of the thionyl fluoride molecular structure , 1973 .

[10]  F. Y. Chu,et al.  Novel Low-Cost SF6 Arcing Byproduct Detectors for Field Use in Gas-Insulated Switchgear , 1986, IEEE Transactions on Power Delivery.

[11]  Nicholas C. Handy Density Functional Theory , 1996 .

[12]  F. Roqueta,et al.  Modeling of inductively coupled plasma SF6/O2/Ar plasma discharge: Effect of O2 on the plasma kinetic properties , 2014 .

[13]  M. Orio,et al.  Density functional theory , 2009, Photosynthesis Research.

[14]  J. S. Francisco,et al.  The SF5Ox radicals, x=0-3. , 2004, Angewandte Chemie.

[15]  Anthony B. Murphy,et al.  Treatment of non-equilibrium phenomena in thermal plasma flows , 2008 .

[16]  M. Rong,et al.  Calculated rate constants of the chemical reactions involving the main byproducts SO2F, SOF2, SO2F2 of SF6 decomposition in power equipment , 2016 .

[17]  J. Corchado,et al.  Theoretical rate constants: on the error cancellation using conventional transition-state theory and Wigner's tunnelling correction , 1994 .

[18]  R. J. Brunt,et al.  Identification of corona discharge-induced SF6 oxidation mechanisms using SF6/18O2/H216O and SF6/16O2/H218O gas mixtures , 1988 .

[19]  Ju Tang,et al.  Characteristics of the Concentration Ratio of $ \hbox{SO}_{2}\hbox{F}_{2}$ to $\hbox{SOF}_{2}$ as the Decomposition Products of $\hbox{SF}_{6}$ Under Corona Discharge , 2012, IEEE Transactions on Plasma Science.

[20]  O. Coufal Composition and thermodynamic properties of reacting mixtures , 1998 .

[21]  A. Murphy,et al.  Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas , 1994, Plasma Chemistry and Plasma Processing.

[22]  Masayuki Hikita,et al.  Influence of disconnecting part on propagation properties of PD-induced electromagnetic wave in model gis , 2010, IEEE Transactions on Dielectrics and Electrical Insulation.

[23]  William H. Miller,et al.  Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants , 1974 .

[24]  G. Gundersen,et al.  Molecular Structure of Thionyltetrafluoride, SOF4 , 1969 .

[25]  Masayoshi Tanaka,et al.  Electromagnetic waves from partial discharges and their detection using patch antenna , 2010, IEEE Transactions on Dielectrics and Electrical Insulation.

[26]  J. Casanovas,et al.  Decomposition products from negative and 50 Hz ac corona discharges in compressed SF6 and SF6/N2 (10:90) mixtures. Effect of water vapour added to the gas , 1999 .

[27]  M. Rong,et al.  Thermophysical properties of SF6-Cu mixtures at temperatures of 300–30,000 K and pressures of 0.01–1.0 MPa: part 2. Collision integrals and transport coefficients , 2014 .

[28]  Hao,et al.  Investigations on Discharge and Decomposition Characteristics of SF_6 Under Various Experimental Conditions , 2013 .

[29]  Yi Wu,et al.  Dominant particles and reactions in a two-temperature chemical kinetic model of a decaying SF6 arc , 2016 .

[30]  W. Tolles,et al.  Structure and Dipole Moment for SF4 , 1962 .

[31]  Jules W. Moskowitz,et al.  Water Molecule Interactions , 1970 .

[32]  W. Hase,et al.  Ab initio potential and variational transition state theory rate constant for H-atom association with the diamond (111) surface , 1994 .

[33]  R. J. Van Brunt,et al.  Fundamental processes of SF/sub 6/ decomposition and oxidation in glow and corona discharges , 1990 .

[34]  L. Adamec,et al.  On kinetics of reactions in HV circuit breakers after current zero , 1999 .

[35]  C. W. Patterson,et al.  Orbital level splitting in octahedral symmetry and SF6 rotational spectra. II. Quantitative treatment of high J levels , 1977 .

[36]  K. Brand,et al.  Particle densities in a decaying SF6 plasma , 1978 .

[37]  Benjamin A. Ellingson,et al.  Multicoefficient Gaussian-3 calculation of the rate constant for the OH + CH4 reaction and its 12C/13C kinetic isotope effect with emphasis on the effects of coordinate system and torsional treatment. , 2007, The journal of physical chemistry. A.

[38]  J. Pople,et al.  Theory of molecular interactions. III. A comparison of studies of H2O polymers using different molecular‐orbital basis sets , 1973 .

[39]  B. C. O'Neill,et al.  Negative-ion/molecule reactions in sulphur hexafluoride , 1975 .

[40]  B. C. Garrett,et al.  Variational transition state theory evaluation of the rate constant for proton transfer in a polar solvent , 2001 .

[41]  G. Gutsev,et al.  A theoretical investigation on the molecular and electronic structure of the SFn compounds n=1-5 and their singly charged negative ions , 1992 .

[42]  M. Rong,et al.  Thermophysical properties of SF6–Cu mixtures at temperatures of 300–30 000 K and pressures of 0.01–1.0 MPa: part 1. Equilibrium compositions and thermodynamic properties considering condensed phases , 2014 .

[43]  S. Chiu,et al.  Combining Theory with Experiment: Assessment of the Thermochemistry of SFn, SFn+, and SFn-, n = 1-6 , 1995 .

[44]  I. C. Plumb,et al.  A model for the etching of silicon in SF6/O2 plasmas , 1990 .

[45]  M. Bartlová,et al.  Comparison of some models of reaction kinetics in HV circuit breakers with SF6 after current zero , 2002 .

[46]  G. Camilli Gas - Insulated Power Transformers , 1960 .

[47]  J. Suehiro,et al.  Analysis of PD-generated SF/sub 6/ decomposition gases adsorbed on carbon nanotubes , 2006, IEEE Transactions on Dielectrics and Electrical Insulation.

[48]  H. Eyring,et al.  Absolute Reaction Rate Constants and Chemical Reaction Cross Sections of Bimolecular Reactions , 1971 .

[49]  A. Gleizes,et al.  Properties of air–aluminum thermal plasmas , 2012 .

[50]  M. Naidu,et al.  Advances in High Voltage Insulation and Arc Interruption in SF6 and Vacuum , 1982 .

[51]  W. Green,et al.  HYDROGEN ABSTRACTION RATES VIA DENSITY FUNCTIONAL THEORY , 1999 .

[52]  R. Marcus On the Theory of Chemical‐Reaction Cross Sections. I. A Statistical‐Dynamical Model , 1966 .

[53]  F. Chu,et al.  SF6 Decomposition in Gas-Insulated Equipment , 1986, IEEE Transactions on Electrical Insulation.

[54]  R. J. Van Brunt,et al.  Plasma chemical model for decomposition of SF6 in a negative glow corona discharge , 1994 .

[55]  X. H. Wang,et al.  Wall fluxes of reactive oxygen species of an rf atmospheric-pressure plasma and their dependence on sheath dynamics , 2012 .

[56]  Martin D. Judd,et al.  Partial discharge diagnostics for gas insulated substations , 1995 .

[57]  M. Rong,et al.  A dominant role of oxygen additive on cold atmospheric-pressure He + O2 plasmas , 2014 .

[58]  C. Pradayrol,et al.  Production of , , , , and in and (50 - 50) - mixtures exposed to negative coronas , 1997 .

[59]  Frédéric Bohr,et al.  KiSThelP: A program to predict thermodynamic properties and rate constants from quantum chemistry results† , 2014, J. Comput. Chem..

[60]  G. T. Kohman,et al.  Electrical Decomposition of Sulfur Hexafluoride , 1953 .

[61]  Hua Hou,et al.  Ab Initio Mechanism and Multichannel RRKM−TST Rate Constant for the Reaction of Cl(2P) with CH2CO (Ketene) , 2000 .

[62]  C. Beyer,et al.  Influence of reactive SF/sub x/ gases on electrode surfaces after electrical discharges under SF/sub 6/ atmosphere , 2000 .

[63]  Xiaohua Wang,et al.  Investigation on the placement effect of UHF sensor and propagation characteristics of PD-induced electromagnetic wave in GIS based on FDTD method , 2014, IEEE Transactions on Dielectrics and Electrical Insulation.

[64]  Isidor Sauers,et al.  By-product formation in spark breakdown of SF6/O2 mixtures , 1988 .

[65]  B. C. Garrett,et al.  Variational Transition State Theory , 1980 .

[66]  P. Pechukas,et al.  TRANSITION STATE THEORY , 1981 .

[67]  Yi Wu,et al.  Calculation of combined diffusion coefficients in SF6-Cu mixtures , 2014 .

[68]  M. Rong,et al.  Variable radio-frequency cold atmospheric He + O2 discharges: from electron-heating mechanism to reactive species delivery , 2013 .

[69]  HO + OClO Reaction System: Featuring a Barrierless Entrance Channel with Two Transition States. , 2015, The journal of physical chemistry. A.

[70]  Ju Tang,et al.  Partial discharge recognition through an analysis of SF6 decomposition products part 1: decomposition characteristics of SF6 under four different partial discharges , 2012, IEEE Transactions on Dielectrics and Electrical Insulation.

[71]  E. F. Greene,et al.  Chemical reaction cross sections and rate constants , 1968 .

[72]  I. C. Plumb,et al.  Gas-phase combination reactions of SF4 and SF5 with F in plasmas of SF6 , 1988 .

[73]  S. Ji,et al.  Experimental Investigations on Low-Energy Discharge in ${\rm SF}_{6}$ Under Low-Moisture Conditions , 2014, IEEE Transactions on Plasma Science.

[74]  J. Herron S2 F10 Formation in Computer Simulation Studies of the Breakdown of SF6 , 1987, IEEE Transactions on Electrical Insulation.

[75]  D. E. Mann,et al.  Microwave Spectrum and Structure of Sulfuryl Fluoride , 1957 .

[76]  G. Streit,et al.  Negative ion–molecule reactions of SF4 , 1981 .

[77]  G. Diercksen SCF MO LCGO studies on hydrogen bondng. The water dimer , 1969 .

[78]  T. Miller,et al.  A theoretical study of high electron affinity sulfur oxyfluorides: SO3F, SO2F3, and SOF5 , 2002 .

[79]  Isidor Sauers Evidence for SF4 and SF2 formation in SF6 corona discharges , 1991 .

[80]  L. Niemeyer,et al.  SF/sub 6/ and the atmosphere , 1992 .

[81]  Hiroyuki Tamura,et al.  Photochemical reaction of sulfur hexafluoride with water in low-temperature xenon matrices. , 2011, The Journal of chemical physics.