Networks in nature : dynamics, evolution, and modularity

In this thesis we propose some new approaches to the study of complex networks, and apply them to multiple domains, focusing in particular on protein-protein interaction networks. We begin by examining the roles of individual proteins; specifically, the influential idea of 'date' and 'party' hubs. It was proposed that party hubs are local coordinators whereas date hubs are global connectors. We show that the observations underlying this proposal appear to have been largely illusory, and that topological properties of hubs do not in general correlate with interactor co-expression, thus undermining the primary basis for the categorisation. However, we find significant correlations between interaction centrality and the functional similarity of the interacting proteins, indicating that it might be useful to conceive of roles for protein-protein interactions, as opposed to individual proteins. The observation that examining just one or a few network properties can be misleading motivates us to attempt to develop a more holistic methodology for network investigation. A wide variety of diagnostics of network structure exist, but studies typically employ only small, largely arbitrarily selected subsets of these. Here we simultaneously investigate many networks using many diagnostics in a data-driven fashion, and demonstrate how this approach serves to organise both networks and diagnostics, as well as to relate network structure to functionally relevant characteristics in a variety of settings. These include finding fast estimators for the solution of hard graph problems, discovering evolutionarily significant aspects of metabolic networks, detecting structural constraints on particular network types, and constructing summary statistics for efficient model-fitting to networks. We use the last mentioned to suggest that duplication-divergence is a feasible mechanism for protein-protein interaction evolution, and that interactions may rewire faster in yeast than in larger genomes like human and fruit fly. Our results help to illuminate protein-protein interaction networks in multiple ways, as well as providing some insight into structure-function relationships in other types of networks. We believe the methodology outlined here can serve as a general-purpose, data-driven approach to aid in the understanding of networked systems.

[1]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[2]  Gesine Reinert,et al.  Predicting and Validating Protein Interactions Using Network Structure , 2008, PLoS Comput. Biol..

[3]  A. S. Weigend,et al.  Selecting Input Variables Using Mutual Information and Nonparemetric Density Estimation , 1994 .

[4]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[5]  Carsten Wiuf,et al.  Using Likelihood-Free Inference to Compare Evolutionary Dynamics of the Protein Networks of H. pylori and P. falciparum , 2007, PLoS Comput. Biol..

[6]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[7]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[8]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[9]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[10]  Danail Bonchev,et al.  Evolution of metabolic network organization , 2010, BMC Systems Biology.

[11]  Scott A. Shaffer,et al.  Genetic Variation Shapes Protein Networks Mainly through Non-transcriptional Mechanisms , 2011, PLoS biology.

[12]  Charlotte M. Deane,et al.  Revisiting Date and Party Hubs: Novel Approaches to Role Assignment in Protein Interaction Networks , 2009, PLoS Comput. Biol..

[13]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[14]  Rafael A. Irizarry,et al.  A Model-Based Background Adjustment for Oligonucleotide Expression Arrays , 2004 .

[15]  Cosma Rohilla Shalizi,et al.  Philosophy and the practice of Bayesian statistics. , 2010, The British journal of mathematical and statistical psychology.

[16]  S. Shen-Orr,et al.  Superfamilies of Evolved and Designed Networks , 2004, Science.

[17]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  David Warde-Farley,et al.  Dynamic modularity in protein interaction networks predicts breast cancer outcome , 2009, Nature Biotechnology.

[19]  Igor Jurisica,et al.  Online Predicted Human Interaction Database , 2005, Bioinform..

[20]  Michael P. H. Stumpf,et al.  Simulation-based model selection for dynamical systems in systems and population biology , 2009, Bioinform..

[21]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[22]  L. Hubert,et al.  Comparing partitions , 1985 .

[23]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[24]  Vladimir Batagelj,et al.  Network analysis of dictionaries , 2002 .

[25]  Samuel Schmidt,et al.  The political network in Mexico , 1996 .

[26]  Paul Erdös,et al.  On random graphs, I , 1959 .

[27]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Bethany S. Dohleman Exploratory social network analysis with Pajek , 2006 .

[29]  J. Brooks Why most published research findings are false: Ioannidis JP, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece , 2008 .

[30]  J.-M. Marin,et al.  Relevant statistics for Bayesian model choice , 2011, 1110.4700.

[31]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[32]  M. A. O'Neil,et al.  The connectional organization of the cortico-thalamic system of the cat. , 1999, Cerebral cortex.

[33]  Ozlem Keskin,et al.  Topological properties of protein interaction networks from a structural perspective. , 2008, Biochemical Society transactions.

[34]  Danail Bonchev,et al.  Phylogenetic distances are encoded in networks of interacting pathways , 2008, Bioinform..

[35]  V Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[36]  A. Barabasi,et al.  High-Quality Binary Protein Interaction Map of the Yeast Interactome Network , 2008, Science.

[37]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[39]  Carsten Wiuf,et al.  Subnets of scale-free networks are not scale-free: sampling properties of networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  A Díaz-Guilera,et al.  Self-similar community structure in a network of human interactions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Leon Danon,et al.  Comparing community structure identification , 2005, cond-mat/0505245.

[42]  A. Rapoport Contribution to the theory of random and biased nets , 1957 .

[43]  Thomas Wilhelm,et al.  What is a complex graph , 2008 .

[44]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[45]  P. M. Hartigan,et al.  Computation of the Dip Statistic to Test for Unimodality , 1985 .

[46]  Dmitrij Frishman,et al.  MIPS: a database for genomes and protein sequences , 2000, Nucleic Acids Res..

[47]  Renaud Lambiotte,et al.  Line graphs of weighted networks for overlapping communities , 2010 .

[48]  P. Killworth,et al.  Informant Accuracy in Social Network Data , 1976 .

[49]  P. Killworth,et al.  Informant accuracy in social-network data V. An experimental attempt to predict actual communication from recall data☆ , 1982 .

[50]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[51]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[52]  A. Vázquez,et al.  Network clustering coefficient without degree-correlation biases. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Jingchun Chen,et al.  Detecting functional modules in the yeast protein-protein interaction network , 2006, Bioinform..

[54]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[55]  D. Cvetkovic,et al.  Eigenspaces of graphs: Bibliography , 1997 .

[56]  J. Miro-Julia,et al.  Marvel Universe looks almost like a real social network , 2002 .

[57]  V. Gol'dshtein,et al.  Vulnerability and Hierarchy of Complex Networks , 2004, cond-mat/0409298.

[58]  R. Rubinstein The Cross-Entropy Method for Combinatorial and Continuous Optimization , 1999 .

[59]  C. Landry,et al.  An in Vivo Map of the Yeast Protein Interactome , 2008, Science.

[60]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[61]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[62]  I. Jurisica,et al.  Unequal evolutionary conservation of human protein interactions in interologous networks , 2007, Genome Biology.

[63]  W. Zachary,et al.  An Information Flow Model for Conflict and Fission in Small Groups , 1977, Journal of Anthropological Research.

[64]  S. Lovell,et al.  Protein-protein interaction networks and biology—what's the connection? , 2008, Nature Biotechnology.

[65]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[66]  E. Voeten Clashes in the Assembly , 2000, International Organization.

[67]  A. Barabasi,et al.  An empirical framework for binary interactome mapping , 2008, Nature Methods.

[68]  Alpan Raval,et al.  Identifying Hubs in Protein Interaction Networks , 2009, PloS one.

[69]  A. Heath,et al.  Strategy and Transaction in an African Factory , 1974 .

[70]  James H. Fowler,et al.  Legislative cosponsorship networks in the US House and Senate , 2006, Soc. Networks.

[71]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[72]  H. Simon,et al.  ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS , 1955 .

[73]  Mark Gerstein,et al.  The Importance of Bottlenecks in Protein Networks: Correlation with Gene Essentiality and Expression Dynamics , 2007, PLoS Comput. Biol..

[74]  Judd Harrison Michael,et al.  Modeling the communication network in a sawmill , 1997 .

[75]  David L. Robertson,et al.  Protein Interactions from Complexes: A Structural Perspective , 2006, Comparative and functional genomics.

[76]  P. Killworth,et al.  Informant accuracy in social network data III: A comparison of triadic structure in behavioral and cognitive data , 1979 .

[77]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[78]  R. Guimerà,et al.  Functional cartography of complex metabolic networks , 2005, Nature.

[79]  E. B. Andersen,et al.  Information Science and Statistics , 1986 .

[80]  Robert R. Faulkner,et al.  Music on Demand: Composers and Careers in the Hollywood Film Industry , 1982 .

[81]  Alessandro Vespignani,et al.  Detecting rich-club ordering in complex networks , 2006, physics/0602134.

[82]  Gary D Bader,et al.  Analyzing yeast protein–protein interaction data obtained from different sources , 2002, Nature Biotechnology.

[83]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[84]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[85]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[86]  Ginestra Bianconi,et al.  Entropy measures for networks: toward an information theory of complex topologies. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[87]  李幼升,et al.  Ph , 1989 .

[88]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[89]  Charlotte M. Deane,et al.  An assessment of the uses of homologous interactions , 2008, Bioinform..

[90]  F. Radicchi,et al.  Benchmark graphs for testing community detection algorithms. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[91]  J. A. Rodríguez-Velázquez,et al.  Subgraph centrality in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[92]  Marc R. Wilkins,et al.  Sticking together? Falling apart? Exploring the dynamics of the interactome. , 2008, Trends in biochemical sciences.

[93]  Kai Wang,et al.  Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks , 2007, ISMB/ECCB.

[94]  Shi Zhou,et al.  The rich-club phenomenon in the Internet topology , 2003, IEEE Communications Letters.

[95]  D. Botstein,et al.  Genomic expression programs in the response of yeast cells to environmental changes. , 2000, Molecular biology of the cell.

[96]  P. Kemmeren,et al.  Protein interaction verification and functional annotation by integrated analysis of genome-scale data. , 2002, Molecular cell.

[97]  C. Deane,et al.  Protein Interactions , 2002, Molecular & Cellular Proteomics.

[98]  B. Snel,et al.  Comparative assessment of large-scale data sets of protein–protein interactions , 2002, Nature.

[99]  L. Mirny,et al.  Protein complexes and functional modules in molecular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[100]  A. Kimball Romney,et al.  Predicting informant accuracy from patterns of recall among individuals , 1984 .

[101]  G. Yule,et al.  A Mathematical Theory of Evolution Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .

[102]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[103]  Martin Rosvall,et al.  An information-theoretic framework for resolving community structure in complex networks , 2007, Proceedings of the National Academy of Sciences.

[104]  Andrea Lancichinetti,et al.  Detecting the overlapping and hierarchical community structure in complex networks , 2008, 0802.1218.

[105]  Degree distribution of complex networks from statistical mechanics principles , 2006, cond-mat/0606365.

[106]  A. Arenas,et al.  Models of social networks based on social distance attachment. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[107]  Emília P. Martins,et al.  Estimating the Rate of Phenotypic Evolution from Comparative Data , 1994, The American Naturalist.

[108]  Mason A. Porter,et al.  Communities in Networks , 2009, ArXiv.

[109]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[110]  A. Coolen,et al.  Entropies of complex networks with hierarchically constrained topologies. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[111]  Vladimir Filkov,et al.  Strong associations between microbe phenotypes and their network architecture. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[112]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[113]  Neil D. Lawrence,et al.  Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models , 2005, J. Mach. Learn. Res..

[114]  A-L Barabási,et al.  Structure and tie strengths in mobile communication networks , 2006, Proceedings of the National Academy of Sciences.

[115]  Mason A. Porter,et al.  Taxonomies of networks from community structure. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[116]  K. T. Poole,et al.  Polarized America: The Dance of Ideology and Unequal Riches , 2006 .

[117]  K. T. Poole,et al.  Congress: A Political-Economic History of Roll Call Voting , 1997 .

[118]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[119]  Ove Frank,et al.  http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained , 2007 .

[120]  John D. Storey,et al.  Mapping the Genetic Architecture of Gene Expression in Human Liver , 2008, PLoS biology.

[121]  Ozlem Keskin,et al.  Human Cancer Protein-Protein Interaction Network: A Structural Perspective , 2009, PLoS Comput. Biol..

[122]  Lan V. Zhang,et al.  Evidence for dynamically organized modularity in the yeast protein–protein interaction network , 2004, Nature.

[123]  R. Lambiotte,et al.  Random Walks, Markov Processes and the Multiscale Modular Organization of Complex Networks , 2008, IEEE Transactions on Network Science and Engineering.

[124]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[125]  Anastasios Bezerianos,et al.  An in silico method for detecting overlapping functional modules from composite biological networks , 2008, BMC Systems Biology.

[126]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[127]  F. Rendl,et al.  A thermodynamically motivated simulation procedure for combinatorial optimization problems , 1984 .

[128]  Garry Robins,et al.  An introduction to exponential random graph (p*) models for social networks , 2007, Soc. Networks.

[129]  Satoru Kawai,et al.  An Algorithm for Drawing General Undirected Graphs , 1989, Inf. Process. Lett..

[130]  J. A. Rodríguez-Velázquez,et al.  Spectral measures of bipartivity in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[131]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[132]  P. Killworth,et al.  Informant accuracy in social network data IV: a comparison of clique-level structure in behavioral and cognitive network data , 1979 .

[133]  A. Gelman Induction and Deduction in Baysian Data Analysis , 2011 .

[134]  S. Wasserman,et al.  Logit models and logistic regressions for social networks: II. Multivariate relations. , 1999, The British journal of mathematical and statistical psychology.

[135]  P. Pin,et al.  Assessing the relevance of node features for network structure , 2008, Proceedings of the National Academy of Sciences.

[136]  Alberto Leon-Garcia,et al.  Communication Networks , 2000 .

[137]  K. Komurov,et al.  Revealing static and dynamic modular architecture of the eukaryotic protein interaction network , 2007, Molecular Systems Biology.

[138]  Ariel S. Schwartz,et al.  Cost effective strategies for completing the Interactome , 2008, Nature Methods.

[139]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[140]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[141]  P. Donnelly,et al.  Inferring coalescence times from DNA sequence data. , 1997, Genetics.

[142]  A C C Gibbs,et al.  Data Analysis , 2009, Encyclopedia of Database Systems.

[143]  P. Bork,et al.  Evolution of biomolecular networks — lessons from metabolic and protein interactions , 2009, Nature Reviews Molecular Cell Biology.

[144]  P. Mucha,et al.  Party Polarization in Congress: A Social Networks Approach , 2009, 0907.3509.

[145]  Jens Christian Claussen,et al.  Offdiagonal complexity: A computationally quick complexity measure for graphs and networks , 2004, q-bio/0410024.

[146]  Jari Saramäki,et al.  A comparative study of social network models: Network evolution models and nodal attribute models , 2008, Soc. Networks.

[147]  S. Fiske,et al.  The Handbook of Social Psychology , 1935 .

[148]  Ernesto Estrada,et al.  Spectral scaling and good expansion properties in complex networks , 2006, Europhysics Letters (EPL).

[149]  Stanley Milgram,et al.  An Experimental Study of the Small World Problem , 1969 .

[150]  Gert Sabidussi,et al.  The centrality index of a graph , 1966 .

[151]  P. Killworth,et al.  INFORMANT ACCURACY IN SOCIAL NETWORK DATA II , 1977 .

[152]  G. Bianconi,et al.  Shannon and von Neumann entropy of random networks with heterogeneous expected degree. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[153]  Ulrik Brandes,et al.  On Modularity Clustering , 2008, IEEE Transactions on Knowledge and Data Engineering.

[154]  Andrey A. Dobrynin,et al.  The Szeged Index and an Analogy with the Wiener Index , 1995, J. Chem. Inf. Comput. Sci..

[155]  Abraham P. Punnen,et al.  The traveling salesman problem and its variations , 2007 .

[156]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[157]  Marc Vidal,et al.  Confirmation of Organized Modularity in the Yeast Interactome , 2007, PLoS biology.

[158]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[159]  P. Jaccard Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines , 1901 .

[160]  J. Hartigan,et al.  The Dip Test of Unimodality , 1985 .

[161]  Stuart Barber,et al.  All of Statistics: a Concise Course in Statistical Inference , 2005 .

[162]  Anne-Laure Boulesteix,et al.  Over-optimism in bioinformatics research , 2010, Bioinform..

[163]  Jeffrey C. Johnson,et al.  Network Visualization: The "Bush Team" in Reuters News Ticker 9/11-11/15/01 , 2004, J. Soc. Struct..

[164]  S. Batalov,et al.  A gene atlas of the mouse and human protein-encoding transcriptomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[165]  Daniel J. Fenn,et al.  Network communities and the foreign exchange market , 2010 .

[166]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[167]  Robin Sibson,et al.  SLINK: An Optimally Efficient Algorithm for the Single-Link Cluster Method , 1973, Comput. J..

[168]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[169]  Shekhar C. Mande,et al.  Dynamic Changes in Protein Functional Linkage Networks Revealed by Integration with Gene Expression Data , 2008, PLoS Comput. Biol..

[170]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[171]  Ernesto Estrada Topological structural classes of complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[172]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[173]  Mathew D. Penrose,et al.  Random Geometric Graphs , 2003 .

[174]  Peter J Mucha,et al.  Visualization of communities in networks. , 2009, Chaos.

[175]  Christian von Mering,et al.  STRING 8—a global view on proteins and their functional interactions in 630 organisms , 2008, Nucleic Acids Res..

[176]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[177]  S. Wasserman,et al.  Logit models and logistic regressions for social networks: III. Valued relations , 1999 .

[178]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[179]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[180]  L. H.,et al.  Communication Networks , 1936, Nature.

[181]  Steven M. Goodreau,et al.  Advances in exponential random graph (p*) models applied to a large social network , 2007, Soc. Networks.

[182]  Alexander Rives,et al.  Modular organization of cellular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[183]  Jianzhi Zhang Evolution by gene duplication: an update , 2003 .

[184]  Kengo Kinoshita,et al.  COXPRESdb: a database of coexpressed gene networks in mammals , 2007, Nucleic Acids Res..

[185]  Donald E. Knuth,et al.  Dancing links , 2000, cs/0011047.

[186]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[187]  M. Porter,et al.  Critical Truths About Power Laws , 2012, Science.

[188]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[189]  J. Rothberg,et al.  Gaining confidence in high-throughput protein interaction networks , 2004, Nature Biotechnology.

[190]  Andrea Lancichinetti,et al.  Community detection algorithms: a comparative analysis: invited presentation, extended abstract , 2009, VALUETOOLS.

[191]  M. Tyers,et al.  Still Stratus Not Altocumulus: Further Evidence against the Date/Party Hub Distinction , 2007, PLoS biology.

[192]  Pedro Beltrão,et al.  Specificity and Evolvability in Eukaryotic Protein Interaction Networks , 2007, PLoS Comput. Biol..

[193]  S. Berg Snowball Sampling—I , 2006 .

[194]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[195]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[196]  Sune Lehmann,et al.  Link communities reveal multiscale complexity in networks , 2009, Nature.

[197]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[198]  Christos Faloutsos,et al.  Sampling from large graphs , 2006, KDD '06.

[199]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[200]  Mason A. Porter,et al.  Community Structure in the United States House of Representatives , 2007, ArXiv.

[201]  Frank Dudbridge,et al.  The Use of Edge-Betweenness Clustering to Investigate Biological Function in Protein Interaction Networks , 2005, BMC Bioinformatics.

[202]  M. Tyers,et al.  Stratus Not Altocumulus: A New View of the Yeast Protein Interaction Network , 2006, PLoS biology.

[203]  Béla Bollobás,et al.  Random Graphs , 1985 .

[204]  S. Griffis EDITOR , 1997, Journal of Navigation.

[205]  Pablo M. Gleiser,et al.  Community Structure in Jazz , 2003, Adv. Complex Syst..

[206]  D. Maddison,et al.  The Tree of Life Web Project , 2007 .

[207]  A. Vogler,et al.  Complex pattern of coalescence and fast evolution of a mitochondrial rRNA pseudogene in a recent radiation of tiger beetles. , 2005, Molecular biology and evolution.

[208]  Reuven Y. Rubinstein,et al.  Optimization of computer simulation models with rare events , 1997 .

[209]  Jeroen Raes,et al.  Duplication and divergence: the evolution of new genes and old ideas. , 2004, Annual review of genetics.

[210]  K. Kaski,et al.  Dynamics of market correlations: taxonomy and portfolio analysis. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[211]  Aleksandar Stevanovic,et al.  GraphCrunch 2: Software tool for network modeling, alignment and clustering , 2011, BMC Bioinformatics.

[212]  Jano I. van Hemert,et al.  Understanding TSP Difficulty by Learning from Evolved Instances , 2010, LION.

[213]  Derek de Solla Price,et al.  A general theory of bibliometric and other cumulative advantage processes , 1976, J. Am. Soc. Inf. Sci..

[214]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[215]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[216]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[217]  Donald E. Knuth,et al.  The Stanford GraphBase - a platform for combinatorial computing , 1993 .

[218]  Stephen B. Seidman,et al.  Network structure and minimum degree , 1983 .

[219]  M. Young The organization of neural systems in the primate cerebral cortex , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[220]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[221]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[222]  Tijana Milenkovic,et al.  GraphCrunch: A tool for large network analyses , 2008, BMC Bioinformatics.

[223]  Peer Bork,et al.  Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation , 2007, Bioinform..

[224]  D. Lusseau,et al.  The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations , 2003, Behavioral Ecology and Sociobiology.

[225]  M. Serrano,et al.  Weighted Configuration Model , 2005, cond-mat/0501750.

[226]  John Scott,et al.  The Anatomy of Scottish Capital: Scottish Companies and Scottish Capital, 1900-1979 , 1980 .

[227]  G. Bianconi Entropy of network ensembles. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[228]  J. Reichardt,et al.  Statistical mechanics of community detection. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[229]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[230]  M. Macholán The mouse skull as a source of morphometric data for phylogeny inference , 2008 .

[231]  Dirk P. Kroese,et al.  The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning , 2004 .

[232]  N. Moran,et al.  Extreme genome reduction in symbiotic bacteria , 2011, Nature Reviews Microbiology.

[233]  Kohei Noshita,et al.  A Technique for Implementing Backtrack Algorithms and its Application , 1979, Inf. Process. Lett..

[234]  A. Barabasi,et al.  Functional and topological characterization of protein interaction networks , 2004, Proteomics.

[235]  Richard M. Murray,et al.  Feedback Systems An Introduction for Scientists and Engineers , 2007 .

[236]  G. Bianconi The entropy of randomized network ensembles , 2007, 0708.0153.

[237]  T. Vicsek,et al.  Clique percolation in random networks. , 2005, Physical review letters.

[238]  Ian Dix,et al.  Yeast Yeast 2000; 17: 95±110. Research Article , 2000 .

[239]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[240]  Dianne P. O'Leary,et al.  Why Do Hubs in the Yeast Protein Interaction Network Tend To Be Essential: Reexamining the Connection between the Network Topology and Essentiality , 2008, PLoS Comput. Biol..

[241]  Premkumar T. Devanbu,et al.  Modeling and verifying a broad array of network properties , 2008, 0805.1489.

[242]  X. Gu,et al.  Rapid evolution of expression and regulatory divergences after yeast gene duplication. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[243]  J. Fowler Connecting the Congress: A Study of Cosponsorship Networks , 2006, Political Analysis.

[244]  Mason A. Porter,et al.  Comparing Community Structure to Characteristics in Online Collegiate Social Networks , 2008, SIAM Rev..

[245]  John Scott,et al.  The Anatomy of Scottish Capital , 1980 .

[246]  Charlotte M. Deane,et al.  The function of communities in protein interaction networks at multiple scales , 2009, BMC Systems Biology.

[247]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[248]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[249]  Christophe Andrieu,et al.  Model criticism based on likelihood-free inference, with an application to protein network evolution , 2009, Proceedings of the National Academy of Sciences.

[250]  Mason A. Porter,et al.  A network analysis of committees in the United States House of Representatives , 2005, ArXiv.

[251]  P. Legrain,et al.  Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens , 1997, Nature Genetics.

[252]  Wei-Min Liu,et al.  Robust estimators for expression analysis , 2002, Bioinform..

[253]  R. Lambiotte,et al.  Line graphs, link partitions, and overlapping communities. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[254]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[255]  Jin Min Kim,et al.  Cyclic topology in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[256]  S.,et al.  An Efficient Heuristic Procedure for Partitioning Graphs , 2022 .

[257]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[258]  Everett M. Rogers,et al.  Communication Networks: Toward a New Paradigm for Research , 1980 .

[259]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[260]  M. Zelen,et al.  Rethinking centrality: Methods and examples☆ , 1989 .

[261]  Yanay Ofran,et al.  Unveiling Protein Functions through the Dynamics of the Interaction Network , 2011, PloS one.

[262]  Jotun Hein,et al.  A Bayesian Approach to the Evolution of Metabolic Networks on a Phylogeny , 2010, PLoS Comput. Biol..

[263]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[264]  B. Snel,et al.  Toward Automatic Reconstruction of a Highly Resolved Tree of Life , 2006, Science.

[265]  Shie Mannor,et al.  A Tutorial on the Cross-Entropy Method , 2005, Ann. Oper. Res..

[266]  Ginestra Bianconi,et al.  Gibbs entropy of network ensembles by cavity methods. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[267]  N. Guex,et al.  Evolutionary trajectories of primate genes involved in HIV pathogenesis. , 2009, Molecular biology and evolution.

[268]  Charlotte M. Deane,et al.  What Evidence Is There for the Homology of Protein-Protein Interactions? , 2012, PLoS Comput. Biol..

[269]  Illés J. Farkas,et al.  CFinder: locating cliques and overlapping modules in biological networks , 2006, Bioinform..

[270]  Philip M. Kim,et al.  The role of disorder in interaction networks: a structural analysis , 2008, Molecular systems biology.