Observation of Highly Nonlinear Resistive Switching of Al2O3/TiO2-x Memristors at Cryogenic Temperature (1.5 K)

In this work, we investigate the behavior of Al2O3/TiO2-x cross-point memristors in cryogenic environment. We report successful resistive switching of memristor devices from 300 K down to 1.5 K. The I-V curves exhibit negative differential resistance effects between 130 and 1.5 K, attributed to a metal-insulator transition (MIT) of the Ti4O7 conductive filament. The resulting highly nonlinear behavior is associated to a maximum ION/IOFF ratio of 84 at 1.5 K, paving the way to selector-free cryogenic passive crossbars. Finally, temperature-dependant thermal activation energies related to the conductance at low bias (20 mV) are extracted for memristors in low resistance state, suggesting hopping-type conduction mechanisms.

[1]  J. Yang,et al.  Direct Identification of the Conducting Channels in a Functioning Memristive Device , 2010, Advanced materials.

[2]  S. Slesazeck,et al.  Nanoscale resistive switching memory devices: a review , 2019, Nanotechnology.

[3]  D. Ielmini,et al.  Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories , 2011, Nanotechnology.

[4]  Francesca Campabadal,et al.  Study From Cryogenic to High Temperatures of the High- and Low-Resistance-State Currents of ReRAM Ni–HfO2–Si Capacitors , 2016, IEEE Transactions on Electron Devices.

[5]  Mau-Phon Houng,et al.  Current transport mechanism in trapped oxides: A generalized trap-assisted tunneling model , 1999 .

[6]  Qiangfei Xia,et al.  Review of memristor devices in neuromorphic computing: materials sciences and device challenges , 2018, Journal of Physics D: Applied Physics.

[7]  Jae Sung Lee,et al.  Resistive switching phenomena: A review of statistical physics approaches , 2015 .

[8]  Jeonghwan Song,et al.  Resistance controllability and variability improvement in a TaOx-based resistive memory for multilevel storage application , 2015 .

[9]  P. Narayanan,et al.  Access devices for 3D crosspoint memorya) , 2014 .

[10]  J. Pascual,et al.  Fine structure in the intrinsic absorption edge of Ti O 2 , 1978 .

[11]  C. Zambelli,et al.  Multilevel HfO2-based RRAM devices for low-power neuromorphic networks , 2019, APL Materials.

[12]  D. Strukov,et al.  Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors , 2012, Applied Physics A.

[13]  M. Parlak,et al.  Space-charge-limited current analysis in amorphous InSe thin films , 2004 .

[14]  Zhiping Yu,et al.  Metallic to hopping conduction transition in Ta2O5−x/TaOy resistive switching device , 2014 .

[15]  Julien Borghetti,et al.  Coexistence of Memristance and Negative Differential Resistance in a Nanoscale Metal‐Oxide‐Metal System , 2011, Advanced materials.

[16]  Edoardo Charbon,et al.  The electronic interface for quantum processors , 2018, Microprocess. Microsystems.

[17]  Ligang Gao,et al.  High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm , 2011, Nanotechnology.

[18]  G. Mattioli,et al.  Ab initio study of the electronic states induced by oxygen vacancies in rutile and anatase TiO 2 , 2008 .

[19]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[20]  Daniele Ielmini,et al.  Resistive switching memories based on metal oxides: mechanisms, reliability and scaling , 2016 .

[21]  K. H. Chow,et al.  Low-temperature coexistence of memory and threshold switchings in Pt/TiOx/Pt crossbar arrays , 2019, Applied Physics Letters.

[22]  T. Cabout,et al.  Bipolar resistive switching from liquid helium to room temperature , 2015 .

[23]  R. Fang,et al.  Low-Temperature Characteristics of HfOx-Based Resistive Random Access Memory , 2015, IEEE Electron Device Letters.

[24]  Y. Le Page,et al.  Electrical conductance of crystalline TinO2n-1 for n=4-9 , 1983 .

[25]  Sungho Kim,et al.  Resistive-Memory Embedded Unified RAM (R-URAM) , 2009, IEEE Transactions on Electron Devices.

[26]  Edoardo Charbon,et al.  Cryo-CMOS Circuits and Systems for Quantum Computing Applications , 2018, IEEE Journal of Solid-State Circuits.

[27]  Liang Zhao,et al.  First principles modeling of charged oxygen vacancy filaments in reduced TiO2-implications to the operation of non-volatile memory devices , 2013, Math. Comput. Model..

[28]  V. Aliev,et al.  Conduction mechanisms of TaN/HfOx/Ni memristors , 2019, Materials Research Express.

[29]  Boris I Shklovskii,et al.  Coulomb gap and low temperature conductivity of disordered systems , 1975 .

[30]  Tingkun Gu,et al.  Role of oxygen vacancies in TiO2-based resistive switches , 2013 .

[31]  F. Arnaud,et al.  Cryogenic Temperature Characterization of a 28-nm FD-SOI Dedicated Structure for Advanced CMOS and Quantum Technologies Co-Integration , 2018, IEEE Journal of the Electron Devices Society.

[32]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[33]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[34]  Shimeng Yu,et al.  Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model , 2011 .

[35]  D. Drouin,et al.  Fabrication of Planar Back End of Line Compatible HfO$_x$ Complementary Resistive Switches , 2017, IEEE Transactions on Nanotechnology.

[36]  B. DeSalvo,et al.  Resistive memory variability: A simplified trap-assisted tunneling model , 2016 .

[37]  H. Lu,et al.  Cryogenic Control Architecture for Large-Scale Quantum Computing , 2014, 1409.2202.

[38]  R. F. Bartholomew,et al.  Electrical Properties of Some Titanium Oxides , 1969 .

[39]  R. Caminiti,et al.  Deep versus Shallow Behavior of Intrinsic Defects in Rutile and Anatase TiO2 Polymorphs , 2010 .

[40]  N. Mott,et al.  Electronic Processes In Non-Crystalline Materials , 1940 .

[41]  P. Asbeck,et al.  Cryogenic Characterization of 22-nm FDSOI CMOS Technology for Quantum Computing ICs , 2019, IEEE Electron Device Letters.

[42]  C. Hwang,et al.  First-principles study of point defects in rutileTiO2−x , 2006 .