From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry.

Supramolecular chemistry has developed over the last forty years as chemistry beyond the molecule. Starting with the investigation of the basis of molecular recognition, it has explored the implementation of molecular information in the programming of chemical systems towards self-organisation processes, that may occur either on the basis of design or with selection of their components. Supramolecular entities are by nature constitutionally dynamic by virtue of the lability of non-covalent interactions. Importing such features into molecular chemistry, through the introduction of reversible bonds into molecules, leads to the emergence of a constitutional dynamic chemistry, covering both the molecular and supramolecular levels. It considers chemical objects and systems capable of responding to external solicitations by modification of their constitution through component exchange or reorganisation. It thus opens the way towards an adaptive and evolutive chemistry, a further step towards the chemistry of complex matter.

[1]  Johanna Stankiewicz,et al.  Chembiogenesis 2005 and Systems Chemistry Workshop , 2006 .

[2]  I. Alfonso,et al.  Highly diastereoselective amplification from a dynamic combinatorial library of macrocyclic oligoimines. , 2006, Chemical communications.

[3]  J. Lehn,et al.  Fusogenic supramolecular vesicle systems induced by metal ion binding to amphiphilic ligands. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Michael M. Pollard,et al.  A Reversible, Unidirectional Molecular Rotary Motor Driven by Chemical Energy , 2005, Science.

[5]  D. Reinhoudt,et al.  Noncovalent assembly of functional groups on calix[4]arene molecular boxes , 1997 .

[6]  D. Lawrence,et al.  Self-Assembling Supramolecular Complexes , 1995 .

[7]  L. Cronin Supramolecular coordination chemistry , 2005 .

[8]  J. F. Stoddart,et al.  Supramolecular science : where it is and where it is going , 1998 .

[9]  D. Reinhoudt,et al.  Synthesis Beyond the Molecule , 2002, Science.

[10]  S. R. Seidel,et al.  High-symmetry coordination cages via self-assembly. , 2002, Accounts of chemical research.

[11]  Jean-Marie Lehn,et al.  Dynamers: dynamic molecular and supramolecular polymers , 2005 .

[12]  R. Kazlauskas,et al.  Receptor-assisted combinatorial chemistry: thermodynamics and kinetics in drug discovery. , 2005, Chemistry.

[13]  Jean-Marie Lehn,et al.  Perspectives in Supramolecular Chemistry—From Molecular Recognition towards Molecular Information Processing and Self‐Organization , 1990 .

[14]  Jean-Marie Lehn,et al.  Toward Self-Organization and Complex Matter , 2002, Science.

[15]  Jeffery T. Davis,et al.  Cation-directed self-assembly of lipophilic nucleosides: the cation's central role in the structure and dynamics of a hydrogen-bonded assembly , 2002 .

[16]  Francesco Zerbetto,et al.  Unidirectional rotation in a mechanically interlocked molecular rotor , 2003, Nature.

[17]  B. Feringa,et al.  In control of motion: from molecular switches to molecular motors. , 2001, Accounts of chemical research.

[18]  G. von Kiedrowski,et al.  Systems chemistry: kinetic and computational analysis of a nearly exponential organic replicator. , 2005, Angewandte Chemie.

[19]  Jean-Marie Lehn,et al.  Toward complex matter: Supramolecular chemistry and self-organization , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. M. Sanderson,et al.  Selective adhesion, lipid exchange and membrane-fusion processes between vesicles of various sizes bearing complementary molecular recognition groups. , 2001, Chemphyschem : a European journal of chemical physics and physical chemistry.

[21]  J. Lehn,et al.  Self-Assembly of Tetra- and Hexanuclear Circular Helicates , 1997 .

[22]  Douglas Philp,et al.  Self‐Assembly in Natural and Unnatural Systems , 1996 .

[23]  Triangular geometrical and magnetic motifs uniquely linked on a spherical capsule surface. , 2005, Angewandte Chemie.

[24]  U. Lüning,et al.  How to synthesize macrocycles efficiently by using virtual combinatorial libraries. , 2002, Chemistry.

[25]  Gerhard F. Swiegers,et al.  New Self-Assembled Structural Motifs in Coordination Chemistry (Chem. Rev. 2000, 100, xxxx. Published on the Web July 15, 2000.). , 2000, Chemical reviews.

[26]  Laurent Vial,et al.  Dynamic combinatorial chemistry. , 2006, Chemical reviews.

[27]  Jean-Marie Lehn,et al.  Dynamic polymer blends--component recombination between neat dynamic covalent polymers at room temperature. , 2005, Chemical communications.

[28]  Euan R. Kay,et al.  A Reversible Synthetic Rotary Molecular Motor , 2004, Science.

[29]  Kenneth N. Raymond,et al.  Supermolecules by Design , 1999 .

[30]  M. Fujita,et al.  Metal-directed self-assembly of two- and three-dimensional synthetic receptors , 1998 .

[31]  Jean-Marie Lehn,et al.  Cryptates: inclusion complexes of macropolycyclic receptor molecules , 1978 .

[32]  A. P. D. S. and,et al.  Proof-of-Principle of Molecular-Scale Arithmetic , 2000 .

[33]  Gérald Bernardinelli,et al.  Helicates as Versatile Supramolecular Complexes. , 1997, Chemical reviews.

[34]  Mark A. Ratner,et al.  Molecular electronics , 2005 .

[35]  N. Harada,et al.  A New Model of Light‐Powered Chiral Molecular Motor with Higher Speed of Rotation, Part 2 – Dynamics of Motor Rotation , 2005 .

[36]  A. Herrmann,et al.  Controlled release of volatile aldehydes and ketones by reversible hydrazone formation--classical" profragrances are getting dynamic. , 2006, Chemical communications.

[37]  Gautam R. Desiraju,et al.  The crystal as a supramolecular entity , 1996 .

[38]  Z. Sideratou,et al.  Molecular Recognition of Complementary Liposomes in Modeling Cell–Cell Recognition , 2001, Chembiochem : a European journal of chemical biology.

[39]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[40]  Jean-Marie Lehn,et al.  Dynamic Combinatorial Chemistry and Virtual Combinatorial Libraries , 1999 .

[41]  M. Ward 18 Supramolecular coordination chemistry , 2002 .

[42]  George W. Gokel,et al.  Synthetic models of cation-conducting channels , 2001 .

[43]  J. Lehn,et al.  Self‐Assembly of a Circular Double Helicate , 1996 .

[44]  Jean-Pierre Sauvage,et al.  Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors , 1998 .

[45]  M. Irie,et al.  Photochromism: Memories and Switches-Introduction. , 2000, Chemical reviews.

[46]  J. Lehn,et al.  Self-recognition in helicate self-assembly: spontaneous formation of helical metal complexes from mixtures of ligands and metal ions. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Mario Ruben,et al.  Grid-type metal ion architectures: functional metallosupramolecular arrays. , 2004, Angewandte Chemie.

[48]  Jean-Marie Lehn,et al.  Supramolecular polymer chemistry—scope and perspectives†‡ , 2002 .

[49]  Nicolas Giuseppone,et al.  Generation of dynamic constitutional diversity and driven evolution in helical molecular strands under Lewis acid catalyzed component exchange. , 2004, Angewandte Chemie.

[50]  J. Lehn,et al.  Soft-to-hard transformation of the mechanical properties of dynamic covalent polymers through component incorporation. , 2007, Chemical communications.

[51]  R. MacKinnon,et al.  Principles of Selective Ion Transport in Channels and Pumps , 2005, Science.

[52]  F. Menger,et al.  Cytomimetic Organic Chemistry: Early Developments , 1995 .

[53]  Stuart J Rowan,et al.  Dynamic covalent chemistry. , 2002, Angewandte Chemie.

[54]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 2022 .

[55]  P. Gütlich,et al.  Hierarchical self-assembly of supramolecular spintronic modules into 1D- and 2D-architectures with emergence of magnetic properties. , 2004, Chemistry.

[56]  Lehn Programmed chemical systems: multiple subprograms and multiple processing/expression of molecular information , 2000, Chemistry.

[57]  Jean-Marie Lehn,et al.  Conjecture: imines as unidirectional photodriven molecular motors-motional and constitutional dynamic devices. , 2006, Chemistry.

[58]  David N. Reinhoudt,et al.  Noncovalent Synthesis Using Hydrogen Bonding. , 2001, Angewandte Chemie.

[59]  Nicolas Giuseppone,et al.  Protonic and temperature modulation of constituent expression by component selection in a dynamic combinatorial library of imines. , 2006, Chemistry.

[60]  Wei‐Yin Sun,et al.  Multicomponent metal-ligand self-assembly. , 2002, Current opinion in chemical biology.

[61]  D. Reinhoudt,et al.  Libraries of non-covalent hydrogen-bonded assemblies; combinatorial synthesis of supramolecular systems , 1998 .

[62]  Olof Ramström,et al.  Drug discovery by dynamic combinatorial libraries , 2002, Nature Reviews Drug Discovery.

[63]  Mir Wais Hosseini,et al.  Molecular tectonics: from simple tectons to complex molecular networks. , 2005, Accounts of chemical research.

[64]  Mark H Schoenfisch,et al.  Reducing implant-related infections: active release strategies. , 2006, Chemical Society reviews.

[65]  Jean-Marie Lehn,et al.  Supramolecular Chemistry / Science , 1999 .

[66]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[67]  J. Lehn,et al.  Induced Fit Selection of a Barbiturate Receptor from a Dynamic Structural and Conformational/Configurational Library , 1999 .

[68]  K. Severin The advantage of being virtual--target-induced adaptation and selection in dynamic combinatorial libraries. , 2004, Chemistry.

[69]  L. Lindoy,et al.  Self Assembly in Supramolecular Systems , 2001 .

[70]  Alain Van Dorsselaer,et al.  Messages in molecules: ligand/cation coding and self-recognition in a constitutionally dynamic system of heterometallic double helicates. , 2006, Chemistry.

[71]  S. Nelson Binuclear complexes of macrocyclic schiff base ligands as hosts for small substrate molecules , 1982 .

[72]  Fingerprinting Doesn't Hold Up as a Science in Court , 2002, Science.

[73]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[74]  Gareth W. V. Cave,et al.  Molecular Borromean Rings , 2004, Science.

[75]  Richard A. Silva,et al.  Unidirectional rotary motion in a molecular system , 1999, Nature.

[76]  Jean-Marie Lehn,et al.  Gelation-driven component selection in the generation of constitutional dynamic hydrogels based on guanine-quartet formation , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[77]  A V Eliseev,et al.  Double-level "orthogonal" dynamic combinatorial libraries on transition metal template. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[78]  M. Albrecht,et al.  "Let's twist again"--double-stranded, triple-stranded, and circular helicates. , 2001, Chemical reviews.

[79]  Jean-Marie Lehn,et al.  Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) , 1988 .

[80]  Anne Valade,et al.  Target‐Assisted Selection of Galactosyltransferase Binders from Dynamic Combinatorial Libraries. An Unexpected Solution with Restricted Amounts of the Enzyme , 2006, Chembiochem : a European journal of chemical biology.

[81]  Burkhard König,et al.  Reversible coordinative bonds in molecular recognition. , 2006, Chemical reviews.

[82]  Juan R. Granja,et al.  Self-Assembling Organic Nanotubes. , 2001, Angewandte Chemie.

[83]  J. Lehn,et al.  Electric-field modulation of component exchange in constitutional dynamic liquid crystals. , 2006, Angewandte Chemie.

[84]  Edwin C. Constable,et al.  Oligopyridines as Helicating Ligands , 1993 .

[85]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[86]  J. Sauvage Transition metals in supramolecular chemistry , 1999 .

[87]  J. F. Stoddart,et al.  Template-directed synthesis of mechanically interlocked molecular bundles using dynamic covalent chemistry. , 2006, Organic letters.

[88]  T. Moore,et al.  Mimicking photosynthetic solar energy transduction. , 2001, Accounts of chemical research.

[89]  Nicolas Giuseppone,et al.  Constitutional dynamic self-sensing in a zinc(II)/polyiminofluorenes system. , 2004, Journal of the American Chemical Society.

[90]  P. Stang,et al.  Self-assembly of discrete cyclic nanostructures mediated by transition metals. , 2000, Chemical reviews.

[91]  Jonathan R. Nitschke,et al.  Self-organization by selection: Generation of a metallosupramolecular grid architecture by selection of components in a dynamic library of ligands , 2003, Proceedings of the National Academy of Sciences of the United States of America.