Interval-valued contractive fuzzy negations

In this work we consider the concept of contractive interval-valued fuzzy negation, as a negation such that it does not increase the length or amplitude of an interval. We relate this to the concept of Lipschitz function. In particular, we prove that the only strict (strong) contractive interval-valued fuzzy negation is the one generated from the standard (Zadeh's) negation.

[1]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[2]  Humberto Bustince,et al.  Automorphisms, negations and implication operators , 2003, Fuzzy Sets Syst..

[3]  Benjamín R. C. Bedregal,et al.  Formal Aspects of Correctness and Optimality of Interval Computations , 2006, Formal Aspects of Computing.

[4]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[5]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[6]  Humberto Bustince,et al.  Ignorance functions. An application to the calculation of the threshold in prostate ultrasound images , 2010, Fuzzy Sets Syst..

[7]  Benjamín R. C. Bedregal,et al.  On interval fuzzy negations , 2010, Fuzzy Sets Syst..

[8]  Zeshui Xu,et al.  Some geometric aggregation operators based on intuitionistic fuzzy sets , 2006, Int. J. Gen. Syst..

[9]  L. Evans Measure theory and fine properties of functions , 1992 .

[10]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[11]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[12]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[13]  R. Yager Families of OWA operators , 1993 .

[14]  Radko Mesiar,et al.  Lipschitzian De Morgan triplets of fuzzy connectives , 2010, Inf. Sci..

[15]  Humberto Bustince,et al.  Interval-valued fuzzy sets constructed from matrices: Application to edge detection , 2009, Fuzzy Sets Syst..

[16]  Benjamín R. C. Bedregal,et al.  A Quasi-Metric Topology Compatible with Inclusion Monotonicity on Interval Space , 1997, Reliab. Comput..

[17]  Etienne E. Kerre,et al.  On the relationship between some extensions of fuzzy set theory , 2003, Fuzzy Sets Syst..

[18]  Bernard De Baets,et al.  Negation and affirmation: the role of involutive negators , 2007, Soft Comput..