Growth mechanisms of Ca- and P-rich MAO films in Ti-15Zr-xMo alloys for osseointegrative implants

[1]  F. Toptan,et al.  Tribocorrosion behavior of β-type Ti-15Zr-based alloys , 2016 .

[2]  L. Latu-Romain,et al.  Development of a flexible nanocomposite TiO 2 film as a protective coating for bioapplications of superelastic NiTi alloys , 2016 .

[3]  M. Niinomi,et al.  Biomedical titanium alloys with Young’s moduli close to that of cortical bone , 2016, Regenerative biomaterials.

[4]  Alexander Tsouknidas,et al.  New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review , 2016, BioMed research international.

[5]  W. Cui,et al.  The improved corrosion resistance and anti-wear performance of Zr–xTi alloys by thermal oxidation treatment , 2015 .

[6]  Chuanzhong Chen,et al.  Review of the biocompatibility of micro-arc oxidation coated titanium alloys , 2015 .

[7]  C. Achete,et al.  Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications. , 2015, Materials science & engineering. C, Materials for biological applications.

[8]  E. Pamuła,et al.  Biofunctionalization of Ti–13Nb–13Zr alloy surface by plasma electrolytic oxidation. Part II , 2015 .

[9]  C. Achete,et al.  Understanding growth mechanisms and tribocorrosion behaviour of porous TiO2 anodic films containing calcium, phosphorous and magnesium , 2015 .

[10]  Donatella Duraccio,et al.  Biomaterials for dental implants: current and future trends , 2015, Journal of Materials Science.

[11]  M. Buzalaf,et al.  Effect of the substitutional elements on the microstructure of the Ti-15Mo-Zr and Ti-15Zr-Mo systems alloys , 2015 .

[12]  G. Dercz,et al.  Bioactivity of coatings formed on Ti-13Nb-13Zr alloy using plasma electrolytic oxidation. , 2015, Materials science & engineering. C, Materials for biological applications.

[13]  J. Celis,et al.  Biotribocorrosion (tribo-electrochemical) characterization of anodized titanium biomaterial containing calcium and phosphorus before and after osteoblastic cell culture. , 2015, Journal of biomedical materials research. Part B, Applied biomaterials.

[14]  L. A. Rocha,et al.  Tribocorrosion behaviour of anodic titanium oxide films produced by plasma electrolytic oxidation for dental implants , 2014 .

[15]  Ho-Jun Song,et al.  Effect of zirconium content on the microstructure, physical properties and corrosion behavior of Ti alloys , 2014 .

[16]  J. Celis,et al.  Tribocorrosion behaviour of anodic treated titanium surfaces intended for dental implants , 2013 .

[17]  Wojciech Simka,et al.  Formation of bioactive coatings on a Ti–6Al–7Nb alloy by plasma electrolytic oxidation , 2013 .

[18]  E. Kurmaev,et al.  Modification of a Ti–Mo alloy surface via plasma electrolytic oxidation in a solution containing calcium and phosphorus , 2013 .

[19]  N. Nomura,et al.  Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti–29Nb–13Ta–4.6Zr alloy , 2012 .

[20]  N. Nomura,et al.  Synthesis of novel oxide layers on titanium by combination of sputter deposition and micro-arc oxidation techniques. , 2011, Dental materials journal.

[21]  K. Kim,et al.  Enhancement of calcium phosphate formation on zirconium by micro-arc oxidation and chemical treatments , 2011 .

[22]  D. Luo,et al.  Corrosion behavior of Ti–Mo alloys cold rolled and heat treated , 2011 .

[23]  S. R. Biaggio,et al.  Corrosion resistance of the Ti–50Zr at.% alloy after anodization in different acidic electrolytes , 2010 .

[24]  Chih-Hsin Tang,et al.  Micro-arc oxidation of β-titanium alloy: Structural characterization and osteoblast compatibility , 2009 .

[25]  T. Hanawa An overview of biofunctionalization of metals in Japan , 2009, Journal of The Royal Society Interface.

[26]  T. Hanawa,et al.  Calcium phosphate formation on titanium by low-voltage electrolytic treatments , 2007, Journal of materials science. Materials in medicine.

[27]  P. Chu,et al.  Surface modification of titanium, titanium alloys, and related materials for biomedical applications , 2004 .

[28]  S. Milz,et al.  Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts. , 2004, Anticancer research.

[29]  Xingdong Zhang,et al.  Preparation of bioactive titanium metal via anodic oxidation treatment. , 2004, Biomaterials.

[30]  Y. Sul,et al.  The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. , 2003, Biomaterials.

[31]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .