Structural basis for functional diversity of animal toxins

The diversity of biological functions that are exerted by toxins from snake and scorpion venoms is associated with a limited number of structural frameworks. At present, one predominant basic fold has been observed among scorpion toxins whereas six folds have been found among snake toxins. Most toxin folds have the capacity to accept multiple insertions, deletions and mutations and to exert various recognition functions. We suggest that such folds may serve as guides to engineer new protein functions.

[1]  G. Underwood Classification and Distribution of Venomous Snakes in the World , 1979 .

[2]  R. Loring,et al.  Characterization of neuronal nicotinic receptors by snake venom neurotoxins , 1988, Trends in Neurosciences.

[3]  M. Lazdunski,et al.  Solution conformation of leiurotoxin I (scyllatoxin) by 1H nuclear magnetic resonance , 1990, FEBS letters.

[4]  I. Kuntz,et al.  Structural studies of alpha-bungarotoxin. 1. Sequence-specific 1H NMR resonance assignments. , 1988, Biochemistry.

[5]  R M Stroud,et al.  The crystal structure of alpha-bungarotoxin at 2.5 A resolution: relation to solution structure and binding to acetylcholine receptor. , 1986, Protein engineering.

[6]  Binding of cardiotoxin analogue III from Formosan cobra venom to FL cells , 1986, FEBS letters.

[7]  J. Yates,et al.  The amino acid sequence of the acidic subunit B-chain of crotoxin. , 1990, Biochimica et biophysica acta.

[8]  H. C. Liu,et al.  Toxicity domain in presynaptically toxic phospholipase A2 of snake venom. , 1987, Biochimica et biophysica acta.

[9]  A. Ménez,et al.  Cloning and sequencing of cDNAs encoding the two subunits of Crotoxin. , 1988, Nucleic acids research.

[10]  V. Saudek,et al.  1H‐NMR study of endothelin, sequence‐specific assignment of the spectrum and a solution structure , 1989, FEBS letters.

[11]  A. Lesk,et al.  Conformations of immunoglobulin hypervariable regions , 1989, Nature.

[12]  C. Rochat,et al.  The amino acid sequence of neurotoxin I of Androctonus australis hector. , 1970, European journal of biochemistry.

[13]  M. Cocchi,et al.  A theoretical study of the structure of big endothelin , 1991 .

[14]  R. Kini,et al.  Structure-function relationships of phospholipases. The anticoagulant region of phospholipases A2. , 1987, The Journal of biological chemistry.

[15]  A. Ménez,et al.  Conformation of two homologous neurotoxins. Fluorescence and circular dichroism studies. , 1980, Biochemistry.

[16]  Conformation of sarafotoxin‐6b in aqueous solution determined by NMR spectroscopy and distance geometry , 1991, FEBS letters.

[17]  A. Ménez,et al.  Amino acid sequence of a muscarinic toxin deduced from the cDNA nucleotide sequence. , 1991, Toxicon : official journal of the International Society on Toxinology.

[18]  W. Braun,et al.  Two-dimensional 1H nuclear magnetic resonance study of AaH IT, an anti-insect toxin from the scorpion Androctonus australis Hector. Sequential resonance assignments and folding of the polypeptide chain. , 1991, Biochemistry.

[19]  S. Chwetzoff On the mode of action of basic phospholipase A2 from Naja nigricollis venom. , 1990, Biochimica et biophysica acta.

[20]  K. Kondo,et al.  Amino acid sequences of the two polypeptide chains in beta1-bungarotoxin from the venom of Bungarus multicinctus. , 1978, Journal of biochemistry.

[21]  E. Zlotkin,et al.  A scorpion venom neurotoxin paralytic to insects that affects sodium current inactivation: purification, primary structure, and mode of action. , 1990, Biochemistry.

[22]  R. Hider,et al.  Conformational properties of phospholipases A2 , 1983 .

[23]  Georg E. Schulz,et al.  Principles of Protein Structure , 1979 .

[24]  A. Ménez,et al.  Analysis of cDNAs encoding the two subunits of crotoxin, a phospholipase A2 neurotoxin from rattlesnake venom: the acidic non enzymatic subunit derives from a phospholipase A2-like precursor. , 1991, Biochimica et biophysica acta.

[25]  W. Hol,et al.  Structure of bovine pancreatic phospholipase A2 at 1.7A resolution. , 1981, Journal of molecular biology.

[26]  V. Chiappinelli Kappa-bungarotoxin: a probe for the neuronal nicotinic acetylcholine receptor , 1984 .

[27]  F. Joubert,et al.  Snake venoms. The amino acid sequences of two proteinase inhibitor homologues from Dendroaspis angusticeps venom. , 1980, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[28]  Eric R. Kandel Fidia Research Foundation neuroscience award lectures , 1987 .

[29]  V. Bindokas,et al.  Functional duality and structural uniqueness of depressant insect-selective neurotoxins. , 1991, Biochemistry.

[30]  P B Sigler,et al.  The refined crystal structure of dimeric phospholipase A2 at 2.5 A. Access to a shielded catalytic center. , 1986 .

[31]  J. Harris Phospholipases in snake venoms and their effects on nerve and muscle. , 1985, Pharmacology & therapeutics.

[32]  C. Roumestand,et al.  Three-dimensional solution structure of a curaremimetic toxin from Naja nigricollis venom: a proton NMR and molecular modeling study. , 1992, Biochemistry.

[33]  J. Takagi,et al.  Venom from southern copperhead snake (Agkistrodon contortrix contortrix). II. A unique phospholipase A2 that induces platelet aggregation. , 1988, Toxicon : official journal of the International Society on Toxinology.

[34]  C. Kitada,et al.  Solution conformation of endothelin determined by nuclear magnetic resonance and distance geometry , 1989, FEBS letters.

[35]  V. S. Pashkov,et al.  Solution spatial structure of 'long' neurotoxin M9 from the scorpion Buthus eupeus by 1H-NMR spectroscopy. , 1988, Biophysical chemistry.

[36]  Garland R. Marshall,et al.  Peptides: Chemistry, Structure and Biology , 1990 .

[37]  M. Gelb,et al.  Crystal structure of bee-venom phospholipase A2 in a complex with a transition-state analogue , 1990, Science.

[38]  R. Roth Advances in Cytopharmacology , 1973, The Yale Journal of Biology and Medicine.

[39]  J. Richardson,et al.  Three dimensional structure of erabutoxin b neurotoxic protein: inhibitor of acetylcholine receptor. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[40]  C. Dobson,et al.  Solution structure of neuronal bungarotoxin determined by two-dimensional NMR spectroscopy: sequence-specific assignments, secondary structure, and dimer formation. , 1991, Biochemistry.

[41]  Y. Kyōgoku,et al.  Solution conformation of endothelin determined by means of 1H-NMR spectroscopy and distance geometry calculations. , 1991, Protein engineering.

[42]  M. Lazdunski,et al.  Calciseptine, a peptide isolated from black mamba venom, is a specific blocker of the L-type calcium channel. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[43]  D. Kohda,et al.  1H nuclear magnetic resonance study of the solution conformation of an antibacterial protein, sapecin , 1990, FEBS letters.

[44]  C. Roumestand,et al.  Three-dimensional structure of natural charybdotoxin in aqueous solution by 1H-NMR. Charybdotoxin possesses a structural motif found in other scorpion toxins. , 1991, European journal of biochemistry.

[45]  J. Halpert,et al.  Amino acid sequence of a presynaptic neurotoxin from the venom of Notechis scutatus scutatus (Australian tiger snake). , 1975, The Journal of biological chemistry.

[46]  J C Fontecilla-Camps,et al.  Structure of variant-3 scorpion neurotoxin from Centruroides sculpturatus Ewing, refined at 1.8 A resolution. , 1983, Journal of molecular biology.

[47]  P. Corfield,et al.  The crystal structure of erabutoxin a at 2.0-A resolution. , 1990, The Journal of biological chemistry.

[48]  G. Polis,et al.  The Biology of Scorpions , 1990 .

[49]  R. Lewis,et al.  A complete amino acid sequence for the basic subunit of crotoxin. , 1986, Archives of biochemistry and biophysics.

[50]  L. Mouawad,et al.  Do cardiotoxins possess a functional site? Structural and chemical modification studies reveal the functional site of the cardiotoxin from Naja nigricollis. , 1990, Biochimie.

[51]  R. Anderson,et al.  Endothelins, peptides with potent vasoactive properties, are produced by human macrophages , 1990, The Journal of experimental medicine.

[52]  C. Wernstedt,et al.  Amino acid sequence of a snake venom toxin that binds to the muscarinic acetylcholine receptor. , 1991, Toxicon : official journal of the International Society on Toxinology.

[53]  S. LaPlante,et al.  Rapid determination and NMR assignments of antiparallel sheets and helices of a scorpion and a cobra toxin. , 2009, International journal of peptide and protein research.

[54]  C. Roumestand,et al.  Refined structure of charybdotoxin: common motifs in scorpion toxins and insect defensins. , 1991, Science.

[55]  C. Bugg,et al.  Three-dimensional structure of a protein from scorpion venom: a new structural class of neurotoxins. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[56]  F. Kornalík The influence of snake venom enzymes on blood coagulation. , 1985, Pharmacology & therapeutics.

[57]  C. Yu,et al.  Two-dimensional NMR studies and secondary structure of cobrotoxin in aqueous solution. , 1990, European journal of biochemistry.

[58]  C. Bernard Leçons sur les effets des substances toxiques et medicamenteuses / par M. Claude Bernard. , 1857 .

[59]  A. Ménez,et al.  Evidence that the anti‐coagulant and lethal properties of a basic phospholipase A2 from snake venom are unrelated , 1989, FEBS letters.

[60]  P. Lepage,et al.  Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[61]  A. Ménez,et al.  Role of tyrosine and tryptophan residues in the structure-activity relationships of a cardiotoxin from Naja nigricollis venom. , 1987, Biochemistry.

[62]  G. Johansson,et al.  Toxins from the venom of the green mamba Dendroaspis angusticeps that inhibit the binding of quinuclidinyl benzilate to muscarinic acetylcholine receptors. , 1988, Biochimica et biophysica acta.

[63]  J. Changeux,et al.  Pharmacological profile of nicotinic acetylcholine receptors in the rat prefrontal cortex: An electrophysiological study in a slice preparation , 1989, Neuroscience.

[64]  J. Fontecilla-Camps,et al.  Orthorhombic crystals and three-dimensional structure of the potent toxin II from the scorpion Androctonus australis Hector. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[65]  R. Latorre,et al.  Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle , 1985, Nature.

[66]  Erabutoxin b. Initial protein refinement and sequence analysis at 0.140-nm resolution. , 1985, European journal of biochemistry.

[67]  M. Howden,et al.  Studies on the subunit structure of textilotoxin, a potent presynaptic neurotoxin from the venom of the Australian common brown snake (Pseudonaja textilis). 2. The amino acid sequence and toxicity studies of subunit D. , 1991, Biochimica et biophysica acta.

[68]  G. Tu,et al.  A platelet function inhibitor purified from Vipera russelli siamensis (Smith) snake venom. , 1985 .

[69]  P. Nicholson,et al.  Studies on the subunit structure of textilotoxin, a potent neurotoxin from the venom of the Australian common brown snake (Pseudonaja textilis). , 1987, Biochimica et biophysica acta.

[70]  H. Rochat,et al.  Two types of scorpion receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel. , 1982, Toxicon : official journal of the International Society on Toxinology.

[71]  G. Giménez-Gallego,et al.  Purification and characterization of a unique, potent inhibitor of apamin binding from Leiurus quinquestriatus hebraeus venom. , 1988, The Journal of biological chemistry.

[72]  Kini Rm,et al.  Correlation between the enzymatic activity, anticoagulant and antiplatelet effects of phospholipase A2 isoenzymes from Naja nigricollis venom. , 1988 .

[73]  K. Stocker Medical Use of Snake Venom Proteins , 1990 .

[74]  K. Kobayashi,et al.  A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. , 1990, The Journal of biological chemistry.

[75]  D. Gordon,et al.  The binding of the insect selective neurotoxin (AaIT) from scorpion venom to locust synaptosomal membranes , 1984 .

[76]  H. Rochat,et al.  Covalent structure of the insect toxin of the North African scorpion Androctonus australis Hector. , 2009, International journal of peptide and protein research.

[77]  K. Wüthrich,et al.  Secondary structure determination for alpha-neurotoxin from Dendroaspis polylepis polylepis based on sequence-specific 1H-nuclear-magnetic-resonance assignments. , 1988, European journal of biochemistry.

[78]  J. Richardson,et al.  The toxin-agglutinin fold. A new group of small protein structures organized around a four-disulfide core. , 1980, The Journal of biological chemistry.

[79]  A. Harvey,et al.  Dendrotoxins: snake toxins that block potassium channels and facilitate neurotransmitter release. , 1985, Pharmacology & therapeutics.

[80]  H. Rochat,et al.  Disulfide bonds of toxin II of the scorpion Androctonus australis Hector. , 1974, European journal of biochemistry.

[81]  R. Hider,et al.  Conformational properties of the neurotoxins and cytotoxins isolated from Elapid snake venoms. , 1983, CRC critical reviews in biochemistry.

[82]  A. Harvey Cardiotoxins from Cobra Venoms: Possible Mechanisms of Action , 1985 .

[83]  C. Granier,et al.  Structure/activity relationships of scorpion alpha-toxins. Multiple residues contribute to the interaction with receptors. , 1989, European journal of biochemistry.

[84]  M. Navia,et al.  Purification, sequence, and model structure of charybdotoxin, a potent selective inhibitor of calcium-activated potassium channels. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[85]  J. D. Capra,et al.  The amino acid sequence of ragweed pollen allergen Ra5. , 1975, Biochemistry.

[86]  M. Lazdunski,et al.  Crystal structure of a snake venom cardiotoxin. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[87]  J. Drenth,et al.  A comparison of the crystal structures of phospholipase A2 from bovine pancreas and Crotalus atrox venom. , 1985, The Journal of biological chemistry.

[88]  A. Maelicke,et al.  Three-dimensional structure of the "long" neurotoxin from cobra venom. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[89]  A. Harvey,et al.  Facilitatory Neurotoxins and Transmitter Release , 1990 .

[90]  F. Dreyer,et al.  Peptide toxins and potassium channels. , 1990, Reviews of physiology, biochemistry and pharmacology.

[91]  E. Mahé,et al.  1H NMR Study of the solution structure of sarafotoxin-S6b , 1991, Neurochemistry International.

[92]  K. Kondo,et al.  Amino Acid Sequences of Three β-Bungarotoxins (β3-, β4-, and β5-Bungarotoxins) from Bungarus multicinctus Venom. Amino Acid Substitutions in the A Chains , 1982 .

[93]  W. Catterall,et al.  The molecular basis of neuronal excitability. , 1984, Science.

[94]  V. Maiorov,et al.  NMR solution spatial structure of ‘short’ scorpion insectotoxin I5A , 1984 .

[95]  K. Matsuyama,et al.  Purification of three antibacterial proteins from the culture medium of NIH-Sape-4, an embryonic cell line of Sarcophaga peregrina. , 1988, The Journal of biological chemistry.

[96]  G. Petsko,et al.  The crystal structure of a post‐synaptic neurotoxin from sea snake at 2.2 Å resolution , 1976, FEBS letters.

[97]  C. Granier,et al.  Primary structure of scorpion anti‐insect toxins isolated from the venom of Leiurus quinquestriatus quinquestriatus , 1990, FEBS letters.

[98]  D. Eaker,et al.  Taipoxin, an extremely potent presynaptic neurotoxin from the venom of the australian snake taipan (Oxyuranus s. scutellatus). Isolation, characterization, quaternary structure and pharmacological properties. , 1976, European journal of biochemistry.

[99]  G. Winter,et al.  Phage antibodies: filamentous phage displaying antibody variable domains , 1990, Nature.

[100]  R. Pitti,et al.  Platelet glycoprotein IIb-IIIa protein antagonists from snake venoms: evidence for a family of platelet-aggregation inhibitors. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[101]  C. Ownby,et al.  Myotoxic components of snake venoms: their biochemical and biological activities. , 1990, Pharmacology & therapeutics.

[102]  D. Kadouri,et al.  An excitatory and a depressant insect toxin from scorpion venom both affect sodium conductance and possess a common binding site. , 1985, Archives of biochemistry and biophysics.