Boosting tag-based search in social media sites

The availability and pervasive use of smart mobile devices makes it easy to upload videos and photos to the social websites and label them with any arbitrary tags from anywhere and anytime. This paper exploits the social tagging information and reveals the latent hidden tags which might be relevant to a social media item to improve the tag-based search process. The proposed approach predicts links in undirected weighted tripartite graph. From a graph-based proximity perspective, our approach finds the appropriate personalized item in response to the user's query as well as uncovers the hidden tags potentially relevant to a given item. We evaluate our method on real-world social tagging system collected from MovieLens. The experimental evaluation shows that enriching the low annotated items with hidden tags improves the tag-based search performance.

[1]  Huimin Yu,et al.  Multimodal information joint learning for geotagged image search , 2014, 2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW).

[2]  Yong Yu,et al.  Optimizing web search using social annotations , 2007, WWW '07.

[3]  Avare Stewart,et al.  LDA for on-the-fly auto tagging , 2010, RecSys '10.

[4]  Andreas Hotho,et al.  Information Retrieval in Folksonomies: Search and Ranking , 2006, ESWC.

[5]  Christian Bauckhage,et al.  I tag, you tag: translating tags for advanced user models , 2010, WSDM '10.

[6]  Joemon M. Jose,et al.  Personalizing Web Search with Folksonomy-Based User and Document Profiles , 2010, ECIR.

[7]  Adam Mathes,et al.  Folksonomies-Cooperative Classification and Communication Through Shared Metadata , 2004 .

[8]  Licia Capra,et al.  Social ranking: uncovering relevant content using tag-based recommender systems , 2008, RecSys '08.

[9]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[10]  Abdulmotaleb El-Saddik,et al.  Towards Context-Aware Recommendations of Multimedia in an Ambient Intelligence Environment , 2013, 2013 IEEE International Symposium on Multimedia.

[11]  Maryam Ramezani,et al.  Improving Graph-based Approaches for Personalized Tag Recommendation , 2011 .

[12]  Leo Katz,et al.  A new status index derived from sociometric analysis , 1953 .

[13]  David Liben-Nowell,et al.  The link-prediction problem for social networks , 2007 .

[14]  Ralf Krestel,et al.  Latent dirichlet allocation for tag recommendation , 2009, RecSys '09.

[15]  Wolfgang Nejdl,et al.  Can all tags be used for search? , 2008, CIKM '08.

[16]  Abdulmotaleb El-Saddik,et al.  Folksonomy-boosted social media search and ranking , 2011, ICMR.