Structural Damage Identification with a Tuning-free Hybrid Extended Kalman Filter

[1]  Mahendra P. Singh,et al.  Dynamic strain response measurement‐based damage identification in structural frames , 2018 .

[2]  Mahendra P. Singh,et al.  An adaptive unscented Kalman filter for tracking sudden stiffness changes , 2014 .

[3]  You-Lin Xu,et al.  Structural damage identification via multi-type sensors and response reconstruction , 2016 .

[4]  Hyo Seon Park,et al.  GA‐Based Multi‐Objective Optimization for Retrofit Design on a Multi‐Core PC Cluster , 2015, Comput. Aided Civ. Infrastructure Eng..

[5]  Palash Dey,et al.  A statistics and optimization-based approach for crack parameter identification in curved beams , 2018 .

[6]  Ronald T. Kneusel Fixed-Point Numbers , 2015 .

[7]  Yuanqing Xia,et al.  An adaptive Kalman filter estimating process noise covariance , 2017, Neurocomputing.

[8]  Jaleel Valappil,et al.  Systematic estimation of state noise statistics for extended Kalman filters , 2000 .

[9]  Vinay A. Bavdekar,et al.  Identification of process and measurement noise covariance for state and parameter estimation using extended Kalman filter , 2011 .

[10]  Ruigen Yao,et al.  Time and frequency domain regression‐based stiffness estimation and damage identification , 2014 .

[11]  Sebastian Thöns,et al.  On Damage Detection System Information for Structural Systems , 2018, Structural Engineering International.

[12]  Hyo Seon Park,et al.  Damage detection of building structures under ambient excitation through the analysis of the relationship between the modal participation ratio and story stiffness , 2018 .

[13]  Ali Elkamel,et al.  AN OPTIMAL EXTENDED KALMAN FILTER DESIGNED BY GENETIC ALGORITHMS , 2008 .

[14]  Andrew W. Smyth,et al.  Application of the unscented Kalman filter for real‐time nonlinear structural system identification , 2007 .

[15]  Suiyang Khoo,et al.  Probability distribution of decay rate: a statistical time-domain damping parameter for structural damage identification , 2018, Structural Health Monitoring.

[16]  Achintya Haldar,et al.  Unscented Kalman filter with unknown input and weighted global iteration for health assessment of large structural systems , 2016 .

[17]  Yang Yu,et al.  A novel deep learning-based method for damage identification of smart building structures , 2018, Structural Health Monitoring.

[18]  Hyo Seon Park,et al.  Model updating method for damage detection of building structures under ambient excitation using modal participation ratio , 2019, Measurement.

[19]  Li Zhou,et al.  Experimental Study of an Adaptive Extended Kalman Filter for Structural Damage Identification , 2008 .

[20]  Amir F. Atiya,et al.  An Adaptive State Filtering Algorithm for Systems With Partially Known Dynamics , 2002 .

[21]  Lijun Liu,et al.  Identification of multistory shear buildings under unknown earthquake excitation using partial output measurements: numerical and experimental studies , 2013 .

[22]  Xiaowei Shao,et al.  Kalman filtering through the feedback adaption of prior error covariance , 2018, Signal Process..

[23]  M. Hoshiya,et al.  Structural Identification by Extended Kalman Filter , 1984 .

[24]  Tommy H.T. Chan,et al.  Damage identification in a complex truss structure using modal characteristics correlation method and sensitivity-weighted search space , 2018, Structural Health Monitoring.

[25]  Erik A. Johnson,et al.  Phase I IASC-ASCE Structural Health Monitoring Benchmark Problem Using Simulated Data , 2004 .

[26]  Jung-Hoon Kim,et al.  3D displacement measurement model for health monitoring of structures using a motion capture system , 2015 .

[27]  R. Mehra Approaches to adaptive filtering , 1972 .

[28]  Hyo Seon Park,et al.  Distributed Hybrid Genetic Algorithms for Structural Optimization on a PC Cluster , 2006 .

[29]  Li Zhou,et al.  An adaptive extended Kalman filter for structural damage identification , 2006 .

[30]  Christos Georgakis,et al.  How To NOT Make the Extended Kalman Filter Fail , 2013 .

[31]  Duan Wang,et al.  System Identification with Limited Observations and without Input , 1997 .

[32]  Yanjun Li,et al.  A general extended Kalman filter for simultaneous estimation of system and unknown inputs , 2016 .

[33]  Achintya Haldar,et al.  Nonlinear system identification from noisy measurements , 2018 .

[34]  Jean-Claude Golinval,et al.  Structural Damage Diagnosis by Kalman Model Based on Stochastic Subspace Identification , 2004 .

[35]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[36]  James B. Rawlings,et al.  A new autocovariance least-squares method for estimating noise covariances , 2006, Autom..

[37]  Xuemin Shen,et al.  Adaptive fading Kalman filter with an application , 1994, Autom..

[38]  Demetrios G. Lainiotis,et al.  A new class of efficient adaptive nonlinear filters (ANLF) , 1998, IEEE Trans. Signal Process..

[39]  Louis Gagnon,et al.  Parametric Analysis of a Large-Scale Cycloidal Rotor in Hovering Conditions , 2017 .

[40]  Yuanxi Yang,et al.  An Optimal Adaptive Kalman Filter , 2006 .

[41]  Chan Ghee Koh,et al.  Identification and Uncertainty Estimation of Structural Parameters , 1994 .

[42]  Eric C. Kerrigan,et al.  Noise covariance identification for time-varying and nonlinear systems , 2017, Int. J. Control.

[43]  S. L. Ho,et al.  Speed estimation of an induction motor drive using an optimized extended Kalman filter , 2002, IEEE Trans. Ind. Electron..

[44]  Jann N. Yang,et al.  An adaptive extended Kalman filter for structural damage identifications II: unknown inputs , 2007 .

[45]  Hojjat Adeli,et al.  Neuro‐genetic algorithm for non‐linear active control of structures , 2008 .

[46]  Yonggang Zhang,et al.  A Novel Adaptive Kalman Filter With Inaccurate Process and Measurement Noise Covariance Matrices , 2018, IEEE Transactions on Automatic Control.

[47]  Shih Chieh Lo,et al.  Application of real‐time adaptive identification technique on damage detection and structural health monitoring , 2009 .

[48]  Mingqiang Xu,et al.  Modal Strain Energy-based Structural Damage Identification: A Review and Comparative Study , 2018, Structural Engineering International.

[49]  Zhang Yigong,et al.  Nonlinear structural identification using extended kalman filter , 1994 .

[50]  Gu-Quan Song,et al.  Structural damage identification by extended Kalman filter with L1-norm regularization scheme , 2017 .

[51]  Kai Zhao,et al.  Evaluation on State of Charge Estimation of Batteries With Adaptive Extended Kalman Filter by Experiment Approach , 2013, IEEE Transactions on Vehicular Technology.

[52]  Alexander Ilin,et al.  Estimating model error covariance matrix parameters in extended Kalman filtering , 2014 .

[53]  P. Bélanger Estimation of noise covariance matrices for a linear time-varying stochastic process , 1972, Autom..