Orthonormal Bases of Wavelets with Finite Support — Connection with Discrete Filters

We define wavelets and the wavelet transform. After discussing their basic properties, we focus on orthonormal bases of wavelets, in particular bases of wavelets with finite support.

[1]  P. Federbush,et al.  Ondelettes and phase cell cluster expansions, a vindication , 1987 .

[2]  Y. Meyer Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs , 1986 .

[3]  Mj Martin Bastiaans A Sampling Theorem For The Complex Spectrogram, And Gabor's Expansion Of A Signal In Gaussian Elementary Signals , 1981 .

[4]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[5]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[6]  G. Battle Heisenberg proof of the Balian-Low theorem , 1988 .

[7]  J. Morlet,et al.  Wave propagation and sampling theory—Part II: Sampling theory and complex waves , 1982 .

[8]  J. Klauder,et al.  Unitary Representations of the Affine Group , 1968 .

[9]  Edward H. Adelson,et al.  A multiresolution spline with application to image mosaics , 1983, TOGS.

[10]  J. Glimm,et al.  Quantum Physics: A Functional Integral Point of View , 1981 .

[11]  C. Fefferman,et al.  Relativistic Stability of Matter - I , 1986 .

[12]  Mj Martin Bastiaans Sampling theorem for the complex spectrogram, and Gabor's expansion in Gaussian elementary signals , 1981 .

[13]  Dennis Gabor,et al.  Theory of communication , 1946 .

[14]  A. Calderón Intermediate spaces and interpolation, the complex method , 1964 .

[15]  Y. Meyer Ondelettes et fonctions splines , 1987 .

[16]  J. Klauder,et al.  Continuous Representation Theory Using the Affine Group , 1969 .

[17]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[18]  R. Balian Un principe d'incertitude fort en théorie du signal ou en mécanique quantique , 1981 .

[19]  A. Janssen Gabor representation of generalized functions , 1981 .

[20]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  P. G. Lemari'e,et al.  Ondelettes `a localisation exponentielle , 1988 .

[22]  A. Grossmann,et al.  Cycle-octave and related transforms in seismic signal analysis , 1984 .

[23]  米谷 民明,et al.  J. Glimm and A. Jaffe: Quantum Physics; A Functional Integral Point of View, Springer-Verlag, New York and Heidelberg, 1981, xx+418ページ, 24.5×16.5cm, DM62. , 1983 .

[24]  Mark J. T. Smith,et al.  Exact reconstruction techniques for tree-structured subband coders , 1986, IEEE Trans. Acoust. Speech Signal Process..

[25]  F. Low Complete sets of wave packets , 1985 .

[26]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[27]  Y. Meyer,et al.  Ondelettes et bases hilbertiennes. , 1986 .

[28]  J. Morlet,et al.  Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media , 1982 .

[29]  G. Battle A block spin construction of ondelettes. Part I: Lemarié functions , 1987 .