PWARX Model Identification Based on Clustering Approach

This chapter addresses the problem of clustering based procedure for the identification of PieceWise Auto-Regressive eXogenous (PWARX) models. In order to overcome the main drawbacks of the existing methods such as their sensitivity to poor initializations and the existence of outliers, we propose the use of the Chiu’s clustering algorithm and the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. A comparative study of the two proposed approaches with the k-means method is achieved in simulation. The results of experimental validation are also presented to illustrate the effectiveness of the proposed methods.

[1]  Stéphane Lecoeuche,et al.  A sparse optimization approach to state observer design for switched linear systems , 2013, Syst. Control. Lett..

[2]  Kamel Abderrahim,et al.  A new clustering technique for the identification of PWARX hybrid models , 2013, 2013 9th Asian Control Conference (ASCC).

[3]  A. J. van der Schaft,et al.  Complementarity modeling of hybrid systems , 1998, IEEE Trans. Autom. Control..

[4]  Kamel Abderrahim,et al.  An experimental validation of a novel clustering approach to PWARX identification , 2014, Eng. Appl. Artif. Intell..

[5]  J.-N. Lin,et al.  Canonical piecewise-linear approximations , 1992 .

[6]  K. Abderrahim,et al.  New Approaches to Identification of PWARX Systems , 2013 .

[7]  R. Vidal,et al.  Observability and identifiability of jump linear systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[8]  Jacob Roll,et al.  Recent Techniques for the Identification of Piecewise Affine and Hybrid Systems , 2006 .

[9]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[10]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[11]  Shuning Wang,et al.  Identification of dynamic systems using Piecewise-Affine basis function models , 2007, Autom..

[12]  Khaled Boukharouba,et al.  Modélisation et classification de comportements dynamiques des systèmes hybrides , 2011 .

[13]  Kamel Abderrahim,et al.  New Results on PWARX Model Identification Based on Clustering Approach , 2014, Int. J. Autom. Comput..

[14]  Alberto Bemporad,et al.  Identification of piecewise affine systems via mixed-integer programming , 2004, Autom..

[15]  Shuning Wang,et al.  Model predictive control based on adaptive hinging hyperplanes model , 2012 .

[16]  Laurent Bako,et al.  Identification of switched linear systems via sparse optimization , 2011, Autom..

[17]  Alberto Bemporad,et al.  A Greedy Approach to Identification of Piecewise Affine Models , 2003, HSCC.

[18]  Bart De Schutter,et al.  Equivalence of hybrid dynamical models , 2001, Autom..

[19]  K. Abderrahim,et al.  A comparison study of some PWARX system identification methods , 2013, 2013 17th International Conference on System Theory, Control and Computing (ICSTCC).

[20]  Xiao Chen,et al.  Modeling of pH neutralization process using fuzzy recurrent neural network and DNA based NSGA-II , 2014, J. Frankl. Inst..

[21]  Lipo Wang Support vector machines : theory and applications , 2005 .

[22]  Stephen L. Chiu,et al.  Extracting Fuzzy Rules from Data for Function Approximation and Pattern Classification , 2000 .

[23]  Kiyotsugu Takaba,et al.  Identification of piecewise affine systems based on statistical clustering technique , 2004, Autom..

[24]  A. Juloski,et al.  A Bayesian approach to identification of hybrid systems , 2004, CDC.

[25]  Dale E. Seborg,et al.  Adaptive nonlinear control of a pH neutralization process , 1994, IEEE Trans. Control. Syst. Technol..

[26]  Alberto Bemporad,et al.  Observability and controllability of piecewise affine and hybrid systems , 2000, IEEE Trans. Autom. Control..

[27]  Alberto Bemporad,et al.  A bounded-error approach to piecewise affine system identification , 2005, IEEE Transactions on Automatic Control.

[28]  Hans-Peter Kriegel,et al.  Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications , 1998, Data Mining and Knowledge Discovery.

[29]  Ton J.J. van den Boom,et al.  On model predictive control for max-min-plus-scaling discrete event systems , 2010 .

[30]  Arnaud Doucet,et al.  Particle filters for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..

[31]  Bart De Schutter,et al.  The Extended Linear Complementary Problem and the Modeling and Analysis of Hybrid Systems , 1997, Hybrid Systems.

[32]  Kamel Abderrahim,et al.  A Kohonen Neural Network Based Method for PWARX Identification , 2013, ALCOSP.

[33]  David G. Stork,et al.  Pattern Classification , 1973 .

[34]  Tong Heng Lee,et al.  Identification and control of nonlinear systems via piecewise affine approximation , 2010, 49th IEEE Conference on Decision and Control (CDC).

[35]  Manfred Morari,et al.  A clustering technique for the identification of piecewise affine systems , 2001, Autom..

[36]  Mekki Ksouri,et al.  Multimodel Approach using Neural Networks for Complex Systems Modeling and Identification , 2008 .

[37]  Mohammad Shahrokhi,et al.  Adaptive nonlinear control of pH neutralization processes using fuzzy approximators , 2009 .