Nanoscale Morphology and Indentation of Individual Nacre Tablets from the Gastropod Mollusc Trochus Niloticus

The inner nacreous layer of gastropod mollusc Trochus niloticus is composed of ∼95 wt% planar arrays of polygonal aragonite-based tablets (∼8 μm wide, ∼0.9 μm thick, stacked ∼40 nm apart) and ∼5 wt% biomacromolecules. High-resolution tapping mode atomic force microscope images enabled nanoscale resolution of fractured tablet cross-sections, the organic component, and deformation of individual nanoasperities on top of tablet surfaces. Nanoindentation was performed on individual nacre tablets and the elastic modulus E and yield stress σ y were reduced from elastic-plastic finite element simulations yielding E = 92 GPa, σ y = 11 GPa (freshly cleaved samples) and E = 79 GPa, σ y = 9 GPa (artificial seawater soaked samples). Images of the indents revealed extensive plastic deformation with a clear residual indent and surrounding pileup.

[1]  M. Fritz,et al.  Purification and characterization of perlucin and perlustrin, two new proteins from the shell of the mollusc Haliotis laevigata. , 2000, Biochemical and biophysical research communications.

[2]  M. Hanson The Elastic Field for Spherical Hertzian Contact Including Sliding Friction for Transverse Isotropy , 1992 .

[3]  S. Weiner,et al.  Design strategies in mineralized biological materials , 1997 .

[4]  S. Weiner,et al.  Electron diffraction of mollusc shell organic matrices and their relationship to the mineral phase , 1983 .

[5]  F. Barthelat ELASTIC PROPERTIES OF NACRE ARAGONITE TABLETS , 2003 .

[6]  L. Xie,et al.  A novel matrix protein participating in the nacre framework formation of pearl oyster, Pinctada fucata. , 2003, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[7]  Huajian Gao,et al.  A study of fracture mechanisms in biological nano-composites via the virtual internal bond model , 2004 .

[8]  J. S. Palmer,et al.  Micromechanics and Macromechanics of the Tensile Deformation of Nacre , 2006 .

[9]  B. Hannoyer,et al.  Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analyses of mineral and organic matrix during heating of mother of pearl (nacre) from the shell of the mollusc Pinctada maxima. , 1999, Journal of biomedical materials research.

[10]  M. Möller,et al.  Visualization of macromolecules--a first step to manipulation and controlled response. , 2001, Chemical reviews.

[11]  W. Landis Structure and mechanical behavior of biological materials , 2005 .

[12]  Jeffrey E. Bischoff,et al.  Orthotropic Hyperelasticity in Terms of an Arbitrary Molecular Chain Model , 2002 .

[13]  Yuh J. Chao,et al.  Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material: The Shell of Red Abalone , 2004 .

[14]  John D. Currey,et al.  Mechanical properties of mother of pearl in tension , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[15]  K. Katti,et al.  MODELING THE ORGANIC-INORGANIC INTERFACIAL NANOASPERITIES IN A MODEL BIO-NANOCOMPOSITE, NACRE , 2004 .

[16]  A. P. Jackson,et al.  The mechanical design of nacre , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[17]  F. Cui,et al.  Polymorph and morphology of calcium carbonate crystals induced by proteins extracted from mollusk shell , 2000 .

[18]  A K Soh,et al.  Structural and mechanical properties of the organic matrix layers of nacre. , 2003, Biomaterials.

[19]  Geoffrey E. Lloyd,et al.  Atomic number and crystallographic contrast images with the SEM: a review of backscattered electron techniques , 1987, Mineralogical Magazine.

[20]  Zhigang Suo,et al.  Deformation mechanisms in nacre , 2001 .

[21]  Max R. Taylor,et al.  On the structure of aragonite -- Lawrence Bragg revisited. , 2002, Acta crystallographica. Section B, Structural science.

[22]  H. Tang,et al.  Conchiolin-protein in aragonite shells of mollusks , 1996 .

[23]  Marc A. Meyers,et al.  Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells , 2000 .

[24]  L. Bédouet,et al.  Soluble proteins of the nacre of the giant oyster Pinctada maxima and of the abalone Haliotis tuberculata: extraction and partial analysis of nacre proteins. , 2001, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[25]  M. Fritz,et al.  A Simple and Reliable Method for the Determination and Localization of Chitin in Abalone Nacre , 2002 .

[26]  M. Boyce,et al.  Protein Forced Unfolding and Its Effects on the Finite Deformation Stress-Strain Behavior of Biomacromolecular Solids , 2005 .

[27]  J. Evans,et al.  Structural analyses of polyelectrolyte sequence domains within the adhesive elastomeric biomineralization protein Lustrin A , 2002 .

[28]  P. Hansma,et al.  Molecular Cloning and Characterization of Lustrin A, a Matrix Protein from Shell and Pearl Nacre of Haliotis rufescens * , 1997, The Journal of Biological Chemistry.

[29]  M. Boyce,et al.  A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials , 1993 .

[30]  P. Hansma,et al.  Atomic force microscopy of the nacreous layer in mollusc shells , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[31]  M. Barthélémy,et al.  Soluble silk-like organic matrix in the nacreous layer of the bivalve Pinctada maxima. , 2002, European journal of biochemistry.

[32]  Henry E. Bass,et al.  Handbook of Elastic Properties of Solids, Liquids, and Gases , 2004 .

[33]  Zhigang Suo,et al.  Model for the robust mechanical behavior of nacre , 2001 .

[34]  Jeffrey E. Bischoff,et al.  A microstructurally based orthotropic hyperelastic constitutive law , 2002 .

[35]  H. Mutvei Ultrastructural Characteristics of the Nacre in Some Gastropods , 1978 .

[36]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[37]  L. Reimer,et al.  Scanning Electron Microscopy , 1984 .

[38]  A. P. Jackson,et al.  Comparison of nacre with other ceramic composites , 1990 .

[39]  H. Nakahara,et al.  An electron microscope study of the formation of the nacreous layer in the shell of certain bivalve molluscs , 2005, Calcified Tissue Research.

[40]  Mario Viani,et al.  Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites , 1999, Nature.

[41]  Y. Bai,et al.  Microstructure and Characteristics in the Organic Matrix Layers of Nacre , 2002 .

[42]  J. M. Jameson,et al.  Quantitative Chemical Analysis , 1944, Nature.

[43]  D. W. Scott On optimal and data based histograms , 1979 .

[44]  M. Boyce,et al.  A Constitutive Model for the Stress-Strain Behavior of Biomacromolecular Networks Containing Folded Domains , 2004 .

[45]  F. Cui,et al.  Crystal orientation domains found in the single lamina in nacre of the Mytilus edulis shell , 1999 .

[46]  S. Kotha,et al.  Micromechanical model of nacre tested in tension , 2001 .

[47]  Steve Weiner,et al.  Macromolecules in mollusc shells and their functions in biomineralization , 1984 .

[48]  X. H. Wu,et al.  Control of crystal phase switching and orientation by soluble mollusc-shell proteins , 1996, Nature.

[49]  Herbert A. Sturges,et al.  The Choice of a Class Interval , 1926 .

[50]  F. Barthelat,et al.  Mechanical properties of nacre constituents: An inverse method approach , 2004 .

[51]  N. Vagenas,et al.  Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy , 2000 .

[52]  R. Ogden,et al.  Mechanics of biological tissue , 2006 .

[53]  F. Cui,et al.  Observations of damage morphologies in nacre during deformation and fracture , 1995 .

[54]  K. Bachus,et al.  The meaning of graylevels in backscattered electron images of bone. , 1993, Journal of biomedical materials research.

[55]  Paul K. Hansma,et al.  Does Abalone Nacre Form by Heteroepitaxial Nucleation or by Growth through Mineral Bridges , 1997 .

[56]  S. B L A N K,et al.  The nacre protein perlucin nucleates growth of calcium carbonate crystals , 2003 .

[57]  S. Weiner,et al.  X‐ray diffraction study of the insoluble organic matrix of mollusk shells , 1980 .