Mathematical aspects of concept analysis
暂无分享,去创建一个
[1] C. Hyltén-Cavallius. On a combinatorical problem , 1958 .
[2] R. Wille. Geometric Representation of Concept Lattices , 1989 .
[3] K. Čulík. Teilweise Lösung eines verallgemeinerten Problems von K. Zarankiewicz , 1956 .
[4] Michael Mörs,et al. A New Result on the Problem of Zarankiewicz , 1981, J. Comb. Theory, Ser. A.
[5] Leslie G. Valiant,et al. The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..
[6] Pavel Pudlák,et al. Complexity in Mechanized Hypothesis Formation , 1979, Theor. Comput. Sci..
[7] R. Michalski,et al. Learning from Observation: Conceptual Clustering , 1983 .
[8] I. Reiman. Über ein Problem von K. Zarankiewicz , 1958 .
[9] R. Wille. Concept lattices and conceptual knowledge systems , 1992 .
[10] Peter Luksch,et al. A Mathematical Model for Conceptual Knowledge Systems , 1991 .
[11] Rudolf Wille,et al. Subdirect decomposition of concept lattices , 1983, ICFCA.
[12] Steven Roman,et al. A Problem of Zarankiewicz , 1975, J. Comb. Theory, Ser. A.
[13] Rudolf Wille. The skeletons of free distributive lattices , 1991, Discret. Math..
[14] Dean Allemang,et al. The Computational Complexity of Abduction , 1991, Artif. Intell..
[15] J. Bordat. Calcul pratique du treillis de Galois d'une correspondance , 1986 .
[16] S. Znám,et al. On a combinatorical problem of K. Zarankiewicz , 1963 .
[17] Rudolf Wille. Knowledge acquisition by methods of formal concept analysis , 1989 .
[18] Frederick N. Springsteel. Complexity of Hypothesis Formation Problems , 1981, Int. J. Man Mach. Stud..
[19] Jean-Gabriel Ganascia. CHARADE: A Rule System Learning System , 1987, IJCAI.
[20] Two improvements of a result concerning a problem of K , 1964 .
[21] Frank Vogt,et al. Data Analysis Based on a Conceptual File , 1991 .
[22] Jean-Gabriel Ganascia. Improvement and Refinement of the Learning Bias Semantic , 1988, ECAI.
[23] Jaromír Duda. Boolean concept lattices and good contexts , 1989 .
[24] Robert M. Haralick,et al. The Diclique Representation and Decomposition of Binary Relations , 1974, JACM.
[25] Zdzislaw Pawlak,et al. Algebraic theory of independence in information systems , 1991, Fundam. Informaticae.
[26] Michael Luxenburger,et al. Implications partielles dans un contexte , 1991 .
[27] Rudolf Wille,et al. Subdirect product construction of concept lattices , 1987, Discret. Math..
[28] Jürgen Schmidt,et al. Zur Kennzeichnung der Dedekind-MacNeilleschen HÜlle einer geordneten HÜlle , 1956 .
[29] Leslie G. Valiant,et al. The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..
[30] V. K. Finn,et al. On axiomatization of many-valued logics associated with formalization of plausible reasonings , 1989, Stud Logica.
[31] Zdzisław Pawlak,et al. Black box analysis and rough top equalities , 1985 .
[32] de Ng Dick Bruijn. A combinatorial problem , 1946 .
[33] Rudolf Wille. Sur la fusion des contextes individuels , 1984 .
[34] Zdzisław Pawlak,et al. Concept forming and black boxes , 1987 .
[35] Vincent Duquenne,et al. Familles minimales d'implications informatives résultant d'un tableau de données binaires , 1986 .
[36] Rudolf Wille,et al. Lattices in Data Analysis: How to Draw Them with a Computer , 1989 .
[37] V. K. Finn. Plausible inferences and plausible reasoning , 1991 .
[38] A. Guénoche. Construction du treillis de Galois d'une relation binaire , 1990 .
[39] Rudolf Wille,et al. Tensorial decomposition of concept lattices , 1985 .
[40] V. Sós,et al. On a problem of K. Zarankiewicz , 1954 .