The Isoperimetric Number of the Incidence Graph of PG(n, q)

Let $\Gamma_{n,q}$ be the point-hyperplane incidence graph of the projective space $\operatorname{PG}(n,q)$, where $n \ge 2$ is an integer and $q$ a prime power. We determine the order of magnitude of $1-i_V(\Gamma_{n,q})$, where $i_V(\Gamma_{n,q})$ is the vertex-isoperimetric number of $\Gamma_{n,q}$. We also obtain the exact values of $i_V(\Gamma_{2,q})$ and the related incidence-free number of $\Gamma_{2,q}$ for $q \le 16$.

[1]  Douglas R. Stinson,et al.  Nonincident points and blocks in designs , 2013, Discret. Math..

[2]  Jason S. Williford,et al.  On the independence number of the Erdos-Rényi and projective norm graphs and a related hypergraph , 2007 .

[3]  D. Hilbert,et al.  Geometry and the Imagination , 1953 .

[4]  Béla Bollobás,et al.  An Isoperimetric Inequality on the Discrete Torus , 1990, SIAM J. Discret. Math..

[5]  L. H. Harper Global Methods for Combinatorial Isoperimetric Problems , 2004 .

[6]  L. H. Harper On an Isoperimetric Problem for Hamming Graphs , 1999, Discret. Appl. Math..

[7]  László Babai,et al.  Local Expansion of Ssymmetrical Graphs , 1992, Comb. Probab. Comput..

[8]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[9]  Dragan Marusic,et al.  Classification of 2-arc-transitive dihedrants , 2008, J. Comb. Theory, Ser. B.

[10]  Patricia K. Ure A study of (0,n,n+1)-sets and other solutions of the isoperimetric problem in finite projective planes , 1996 .

[11]  I. Leader Discrete isoperimetric inequalities and other combinatorial results , 1989 .

[12]  Jason Rosenhouse,et al.  Expansion Properties Of Levi Graphs , 2006, Ars Comb..

[13]  L. H. Harper Optimal numberings and isoperimetric problems on graphs , 1966 .

[14]  Xiaodong Cao,et al.  On the number of coprime integer pairs within a circle , 1999 .

[15]  R. Denniston Some maximal arcs in finite projective planes , 1969 .

[16]  Jacques Verstraëte,et al.  Large Incidence-free Sets in Geometries , 2012, Electron. J. Comb..

[17]  Hanfried Lenz,et al.  Design theory , 1985 .

[18]  K. Coolsaet,et al.  The complete (k, 3)‐arcs of PG(2,q), q≤13 , 2012 .