Multiscale CLEAN Deconvolution of Radio Synthesis Images

Radio synthesis imaging is dependent upon deconvolution algorithms to counteract the sparse sampling of the Fourier plane. These deconvolution algorithms find an estimate of the true sky brightness from the necessarily incomplete sampled visibility data. The most widely used radio synthesis deconvolution method is the CLEAN algorithm of Hogbom. This algorithm works extremely well for collections of point sources and surprisingly well for extended objects. However, the performance for extended objects can be improved by adopting a multiscale approach. We describe and demonstrate a conceptually simple and algorithmically straightforward extension to CLEAN that models the sky brightness by the summation of components of emission having different size scales. While previous multiscale algorithms work sequentially on decreasing scale sizes, our algorithm works simultaneously on a range of specified scales. Applications to both real and simulated data sets are given.

[1]  Chris Biemesderfer,et al.  Astronomical Data Analysis Software and Systems X , 2001 .

[2]  K. A. Marsh,et al.  The objective function implicit in the CLEAN algorithm , 1987 .

[3]  Martin Vetterli,et al.  Compressive Sampling [From the Guest Editors] , 2008, IEEE Signal Processing Magazine.

[4]  Joseph Wilder A review of: “Image Processing and Data Analysis, the Multiscale Approach” J-L Starck, F. Murtagh and A. Bijaoui Cambridge University Press, ISBN 0-521-59084-1, $80.00 , 1999 .

[5]  W. M. Goss,et al.  PKS B1400−33: An Unusual Radio Relic in a Poor Cluster , 2002, astro-ph/0212154.

[6]  Richard C. Puetter,et al.  The Pixon method of image reconstruction , 1999 .

[7]  U. Schwarz,et al.  The Multi-Resolution CLEAN and its application to the short-spacing problem in interferometry , 1988 .

[8]  J. Högbom,et al.  APERTURE SYNTHESIS WITH A NON-REGULAR DISTRIBUTION OF INTERFEROMETER BASELINES. Commentary , 1974 .

[9]  T. Cornwell,et al.  A simple maximum entropy deconvolution algorithm , 1985 .

[10]  Fionn Murtagh,et al.  Image Processing and Data Analysis - The Multiscale Approach , 1998 .

[11]  Francois Bonnarel,et al.  Entropy and astronomical data analysis: Perspectives from multiresolution analysis , 2001 .

[12]  U. Schwarz MATHEMATICAL-STATISTICAL DESCRIPTION OF ITERATIVE BEAM REMOVING TECHNIQUE (METHOD CLEAN) , 1978 .

[13]  Timothy J. Cornwell,et al.  A method of stabilizing the clean algorithm , 1983 .

[14]  E. Momjian,et al.  Very Long Baseline Array Continuum and H I Absorption Observations of the Ultraluminous Infrared Galaxy IRAS 17208–0014 , 2002, astro-ph/0212091.

[15]  B. G. Clark,et al.  An efficient implementation of the algorithm 'CLEAN' , 1980 .

[16]  Robert K. Pina,et al.  The pixon and Bayesian image reconstruction , 1993, Defense, Security, and Sensing.

[17]  S. Bhatnagar,et al.  Scale sensitive deconvolution of interferometric images - I. Adaptive Scale Pixel (Asp) decomposition , 2004 .

[18]  Robert D. Nowak,et al.  Compressive Sampling Vs. Conventional Imaging , 2006, 2006 International Conference on Image Processing.

[19]  David D. Dixon,et al.  Pixon-based deconvolution. , 1996 .

[20]  S. Gull,et al.  Image reconstruction from incomplete and noisy data , 1978, Nature.

[21]  E. Candès,et al.  Astronomical image representation by the curvelet transform , 2003, Astronomy & Astrophysics.

[22]  Robert D. Nowak,et al.  Signal Reconstruction From Noisy Random Projections , 2006, IEEE Transactions on Information Theory.

[23]  Fionn Murtagh,et al.  Deconvolution in Astronomy: A Review , 2002 .

[24]  T. J. Cornwell,et al.  Clean/Mem Deconvolution Errors: Semicompact Sources , 1994 .

[25]  M. P. Hobson,et al.  Maximum-entropy image reconstruction using wavelets , 2003, astro-ph/0303246.

[26]  D. J. M. Kester,et al.  Pyramid maximum entropy images of IRAS survey data. , 1994 .

[27]  Jean-Luc Starck,et al.  Compressed Sensing in Astronomy , 2008, IEEE Journal of Selected Topics in Signal Processing.

[28]  Jean-Luc Starck,et al.  Deconvolution of astronomical images using the multiscale maximum entropy method , 1996 .