Improved Parallel Depth-First Search in Undirected Planar Graphs

We present an improved parallel algorithm for constructing a depth-first search tree in a connected undirected planar graph. The algorithm runs in O(log2n) time with n/log n processors for an n-vertex graph. It hinges on the use of a new optimal algorithm for computing a cycle separator of an embedded planar graph in O(log n) time with n/log n processors. The best previous algorithms for computing depth-first search trees and cycle separators achieved the same time complexities, but with n processors. Our algorithms run on a parallel random access machine that permits concurrent reads and concurrent writes in its shared memory and allows an arbitrary processor to succeed in case of a write conflict.

[1]  J. Reif,et al.  Parallel Tree Contraction Part 1: Fundamentals , 1989, Adv. Comput. Res..

[2]  Justin R. Smith Parallel Algorithms for Depth-First Searches I. Planar Graphs , 1986, SIAM J. Comput..

[3]  Richard M. Karp,et al.  Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[4]  Ming-Yang Kao,et al.  All Graphs have Cycle Separators and Planar Directed Depth-First Search is in DNC , 1988, AWOC.

[5]  Richard Cole,et al.  Faster Optimal Parallel Prefix Sums and List Ranking , 2011, Inf. Comput..

[6]  Richard M. Karp,et al.  A Survey of Parallel Algorithms for Shared-Memory Machines , 1988 .

[7]  John H. Reif,et al.  Depth-First Search is Inherently Sequential , 1985, Inf. Process. Lett..

[8]  Arthur L. Delcher,et al.  Optimal Parallel Evaluation of Tree-Structured Computations by Raking , 1988, AWOC.

[9]  David G. Kirkpatrick,et al.  A Simple Parallel Tree Contraction Algorithm , 1989, J. Algorithms.

[10]  A. White Graphs, Groups and Surfaces , 1973 .

[11]  Alok Aggarwal,et al.  A random NC algorithm for depth first search , 1987, Comb..

[12]  Wojciech Rytter,et al.  An Optimal Parallel Algorithm for Dynamic Expression Evaluation and Its Applications , 1986, FSTTCS.

[13]  Gary L. Miller,et al.  Finding Small Simple Cycle Separators for 2-Connected Planar Graphs , 1986, J. Comput. Syst. Sci..

[14]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[15]  Jon Freeman,et al.  Parallel Algorithms for Depth-First Search , 1991 .

[16]  Xin He,et al.  Efficient Parallel Algorithms for Series Parallel Graphs , 1991, J. Algorithms.

[17]  Joseph JaJa,et al.  Parallel algorithms for planar graph isomorphism and related problems , 1988 .

[18]  Frank Harary,et al.  Graph Theory , 2016 .

[19]  Xin He,et al.  A Nearly Optimal Parallel Algorithm for Constructing Depth First Spanning Trees in Planar Graphs , 1988, SIAM J. Comput..

[20]  Ming-Yang Kao,et al.  Parallel Depth-First Search in General Directed Graphs , 1990, SIAM J. Comput..

[21]  Vijaya Ramachandran,et al.  An optimal parallel algorithm for graph planarity , 1989, 30th Annual Symposium on Foundations of Computer Science.

[22]  Philip N. Klein,et al.  Efficient parallel algorithms for chordal graphs , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[23]  W. T. Tutte Graph Theory , 1984 .

[24]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[25]  Stuart C. Schwartz,et al.  Concurrent Computations: Algorithms, Architecture, and Technology , 1989 .

[26]  Torben Hagerup,et al.  Planar Depth-First Search in O(log n) Parallel Time , 1990, SIAM J. Comput..

[27]  S. Teng,et al.  Optimal Tree Contraction in the EREW Model , 1988 .

[28]  Richard J. Anderson,et al.  A random 1-011-011-01algorithm for depth first search , 1988 .

[29]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[30]  Wojciech Rytter,et al.  Optimal Parallel Algorithm for Dynamic Expression Evaluation and Context-Free Recognition , 1989, Inf. Comput..

[31]  Yijie Han,et al.  An Optimal Linked List Prefix Algorithm on a Local Memory Computer , 1991, IEEE Trans. Computers.

[32]  Ming-Yang Kao,et al.  Towards overcoming the transitive-closure bottleneck: efficient parallel algorithms for planar digraphs , 1990, STOC '90.

[33]  Mikhail J. Atallah,et al.  Finding Euler Tours in Parallel , 2011, J. Comput. Syst. Sci..

[34]  Larry Rudolph,et al.  The power of parallel prefix , 1985, IEEE Transactions on Computers.

[35]  Torben Hagerup Optimal Parallel Algorithms on Planar Graphs , 1990, Inf. Comput..