Hematopoietic development: a balancing act.

Over the past year, significant new insights have been gained in our understanding of the lineage determination of red blood cells. In particular, evidence has emerged demonstrating that cross-antagonism of lineage-specific transcription factors plays an important role in determining cell phenotype by actively repressing alternate lineage gene programs.

[1]  S. Orkin,et al.  Failure of megakaryopoiesis and arrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG. , 1998, Genes & development.

[2]  I. Barshack,et al.  Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia , 2000, Nature Medicine.

[3]  S. Orkin,et al.  Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: the GATA-1:FOG complex. , 1999, Molecular cell.

[4]  M. Mattei,et al.  The putative oncogene Spi-1: murine chromosomal localization and transcriptional activation in murine acute erythroleukemias. , 1989, Oncogene.

[5]  U. Lendahl,et al.  Generalized potential of adult neural stem cells. , 2000, Science.

[6]  Y Fujiwara,et al.  Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[7]  R. Hoffman,et al.  Hematology: Basic Principles and Practice , 1995 .

[8]  S. Mckercher,et al.  Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. , 2000, Science.

[9]  V. Hartenstein,et al.  Specification of Drosophila hematopoietic lineage by conserved transcription factors. , 2000, Science.

[10]  M. Goodell,et al.  Hematopoietic potential of stem cells isolated from murine skeletal muscle. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[11]  E. Scott,et al.  Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. , 1994, Science.

[12]  S. Orkin,et al.  Consequences of GATA-1 Deficiency in Megakaryocytes and Platelets , 1999 .

[13]  M. Klemsz,et al.  Hematopoietic lineage- and stage-restricted expression of the ETS oncogene family member PU.1. , 1993, Blood.

[14]  A. Feeney,et al.  Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. , 1996, The EMBO journal.

[15]  David Tosh,et al.  Molecular basis of transdifferentiation of pancreas to liver , 2000, Nature Cell Biology.

[16]  S. Orkin,et al.  A lineage‐selective knockout establishes the critical role of transcription factor GATA‐1 in megakaryocyte growth and platelet development , 1997, The EMBO journal.

[17]  S. Orkin,et al.  Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1 , 1991, Nature.

[18]  T. Graf,et al.  GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. , 1995, Genes & development.

[19]  S. Orkin,et al.  PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. , 2000, Blood.

[20]  S. Odelberg,et al.  Dedifferentiation of Mammalian Myotubes Induced by msx1 , 2000, Cell.

[21]  D. Tenen,et al.  Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  J. Visvader,et al.  GATA‐1 but not SCL induces megakaryocytic differentiation in an early myeloid line. , 1992, The EMBO journal.

[23]  S. Orkin,et al.  A "knockdown" mutation created by cis-element gene targeting reveals the dependence of erythroid cell maturation on the level of transcription factor GATA-1. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[24]  W. Mars,et al.  Bone marrow as a potential source of hepatic oval cells. , 1999, Science.

[25]  Sunil Badve,et al.  Derivation of hepatocytes from bone marrow cells in mice after radiation‐induced myeloablation , 2000, Hepatology.

[26]  W. Vainchenker,et al.  Spi-1/PU.1 transgenic mice develop multistep erythroleukemias , 1996, Molecular and cellular biology.

[27]  M. Rudnicki,et al.  Pax7 Is Required for the Specification of Myogenic Satellite Cells , 2000, Cell.

[28]  Stephen L. Nutt,et al.  Commitment to the B-lymphoid lineage depends on the transcription factor Pax5 , 1999, Nature.

[29]  N. Rekhtman,et al.  Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. , 1999, Genes & development.

[30]  A. Vescovi,et al.  Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. , 1999, Science.

[31]  A. Aguzzi,et al.  Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. , 1992, Genes & development.

[32]  E. Querfurth,et al.  Antagonism between C/EBPbeta and FOG in eosinophil lineage commitment of multipotent hematopoietic progenitors. , 2000, Genes & development.

[33]  S. Orkin,et al.  The transcriptional control of hematopoiesis. , 1996, Blood.

[34]  M. Greaves,et al.  Multilineage gene expression precedes commitment in the hemopoietic system. , 1997, Genes & development.

[35]  S. Orkin,et al.  FOG, a Multitype Zinc Finger Protein, Acts as a Cofactor for Transcription Factor GATA-1 in Erythroid and Megakaryocytic Differentiation , 1997, Cell.

[36]  E. Querfurth,et al.  GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. , 2000, Blood.

[37]  H. Blau,et al.  From marrow to brain: expression of neuronal phenotypes in adult mice. , 2000, Science.

[38]  S. Orkin,et al.  Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1 , 2000, Nature Genetics.

[39]  J. Mackay,et al.  Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers , 1999, The EMBO journal.

[40]  I. Wilmut,et al.  "Viable Offspring Derived from Fetal and Adult Mammalian Cells" (1997), by Ian Wilmut et al. , 2014 .

[41]  A. Michelson,et al.  A molecular aspect of hematopoiesis and endoderm development common to vertebrates and Drosophila. , 1996, Development.

[42]  R. Mulligan,et al.  Dystrophin expression in the mdx mouse restored by stem cell transplantation , 1999, Nature.