Generation of neutral and high-density electron–positron pair plasmas in the laboratory

Electron–positron pair plasmas represent a unique state of matter, whereby there exists an intrinsic and complete symmetry between negatively charged (matter) and positively charged (antimatter) particles. These plasmas play a fundamental role in the dynamics of ultra-massive astrophysical objects and are believed to be associated with the emission of ultra-bright gamma-ray bursts. Despite extensive theoretical modelling, our knowledge of this state of matter is still speculative, owing to the extreme difficulty in recreating neutral matter–antimatter plasmas in the laboratory. Here we show that, by using a compact laser-driven setup, ion-free electron–positron plasmas with unique characteristics can be produced. Their charge neutrality (same amount of matter and antimatter), high-density and small divergence finally open up the possibility of studying electron–positron plasmas in controlled laboratory experiments.

[1]  A. Gruzinov Gamma-ray burst phenomenology, shock dynamo, and the first magnetic fields , 2001, astro-ph/0107106.

[2]  S. Shibata Pulsar Electrodynamics , 1999, astro-ph/9912514.

[3]  F. Rohrlich,et al.  Positron-Electron Differences in Energy Loss and Multiple Scattering , 1954 .

[4]  Alan D. Martin,et al.  Review of Particle Physics , 2014, 1412.1408.

[5]  K. Ferrière The interstellar environment of our galaxy , 2001, astro-ph/0106359.

[6]  C. Surko,et al.  A multicell trap to confine large numbers of positrons , 2003 .

[7]  M. Mostafavi,et al.  Absolute calibration for a broad range single shot electron spectrometer , 2006 .

[8]  Chris J. Hooker,et al.  The Astra Gemini project - : A dual-beam petawatt Ti:Sapphire laser system , 2006 .

[9]  F. S. Tsung,et al.  One-to-one direct modeling of experiments and astrophysical scenarios: pushing the envelope on kinetic plasma simulations , 2008, 0810.2460.

[10]  F. Schauer,et al.  Plans for the creation and studies of electron–positron plasmas in a stellarator , 2012 .

[11]  K. Witte,et al.  Generation of MeV electrons and positrons with femtosecond pulses from a table-top laser system , 2002 .

[12]  A. Bell,et al.  A filamentation instability for streaming cosmic-rays , 2011, 1109.5690.

[13]  J. W. Motz,et al.  Bremsstrahlung Cross-Section Formulas and Related Data , 1959 .

[14]  R. Fonseca,et al.  Three-dimensional Weibel instability in astrophysical scenarios , 2003 .

[15]  Martin J. Rees,et al.  Theory of extragalactic radio sources , 1984 .

[16]  K. Haller Quantum Electrodynamics , 1979, Nature.

[17]  Hui Chen,et al.  Relativistic quasimonoenergetic positron jets from intense laser-solid interactions. , 2010, Physical review letters.

[18]  C. Wahlström,et al.  Laser-wakefield acceleration of monoenergetic electron beams in the first plasma-wave period. , 2006, Physical review letters.

[19]  Wei Lu,et al.  OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators , 2002, International Conference on Computational Science.

[20]  A. Langdon,et al.  Relativistic magnetosonic shock waves in synchrotron sources - Shock structure and nonthermal acceleration of positrons , 1992 .

[21]  F. Cerutti,et al.  The FLUKA code: Description and benchmarking , 2007 .

[22]  Marco Borghesi,et al.  The application of laser-driven proton beams to the radiography of intense laser–hohlraum interactions , 2010 .

[23]  C. Keitel,et al.  Laser-driven generation of collimated ultra-relativistic positron beams , 2013 .

[24]  L. Sironi,et al.  RELATIVISTIC PAIR BEAMS FROM TeV BLAZARS: A SOURCE OF REPROCESSED GeV EMISSION RATHER THAN INTERGALACTIC HEATING , 2013, 1312.4538.

[25]  R. Schlickeiser,et al.  PLASMA EFFECTS ON FAST PAIR BEAMS. II. REACTIVE VERSUS KINETIC INSTABILITY OF PARALLEL ELECTROSTATIC WAVES , 2013, 1308.4594.

[26]  A Pak,et al.  Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection. , 2010, Physical review letters.

[27]  A. Giesecke,et al.  Time-resolved characterization of the formation of a collisionless shock. , 2013, Physical review letters.

[28]  Teruyoshi Takahashi,et al.  Calibration of imaging plate for high energy electron spectrometer , 2005 .

[29]  K. Witte,et al.  Generating positrons with femtosecond-laser pulses , 2000 .

[30]  B. Rossi,et al.  High-Energy Particles , 1953 .

[31]  J. Vieira,et al.  Interaction of ultra relativistic e − e + fireball beam with plasma , 2013, New Journal of Physics.

[32]  E. Waxman,et al.  MAGNETIC FIELD EVOLUTION IN RELATIVISTIC UNMAGNETIZED COLLISIONLESS SHOCKS , 2008, 0802.3217.

[33]  Isao Okamoto,et al.  Electromagnetic Extraction of Energy from Kerr Black Holes , 2005, astro-ph/0506302.

[34]  M. V. Medvedev,et al.  Interpenetrating Plasma Shells: Near-Equipartition Magnetic Field Generation and Nonthermal Particle Acceleration , 2003, astro-ph/0307500.

[35]  M. Burgay,et al.  A Double-Pulsar System: A Rare Laboratory for Relativistic Gravity and Plasma Physics , 2004, Science.

[36]  P. Chang,et al.  Long-Term Evolution of Magnetic Turbulence in Relativistic Collisionless Shocks: Electron-Positron Plasmas , 2007, 0704.3832.

[37]  F Longo,et al.  Discovery of Powerful Gamma-Ray Flares from the Crab Nebula , 2011, Science.

[38]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[39]  A. J. van der Horst,et al.  FERMI OBSERVATIONS OF HIGH-ENERGY GAMMA-RAY EMISSION FROM GRB 090217A , 2009, Science.

[40]  Hui Chen,et al.  Relativistic positron creation using ultraintense short pulse lasers. , 2008, Physical review letters.

[41]  D. H. Roberts,et al.  Electron–positron jets associated with the quasar 3C279 , 1998, Nature.

[42]  K. Z. Hatsagortsyan,et al.  Extremely high-intensity laser interactions with fundamental quantum systems , 2011, 1111.3886.

[43]  C. Keitel,et al.  Table-top laser-based source of femtosecond, collimated, ultrarelativistic positron beams. , 2013, Physical review letters.

[44]  R. Craxton,et al.  Hydrodynamics of thermal self‐focusing in laser plasmas , 1984 .

[45]  C. Goebel The Relativistic Gas. , 1958 .

[46]  J. Kirk,et al.  THE ROLE OF SUPERLUMINAL ELECTROMAGNETIC WAVES IN PULSAR WIND TERMINATION SHOCKS , 2013, 1303.2702.

[47]  M. D. Tinkle,et al.  Creation and uses of positron plasmas , 1994 .

[48]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[49]  A. Panaitescu,et al.  Properties of Relativistic Jets in Gamma-Ray Burst Afterglows , 2001, astro-ph/0109124.