The Balloon-borne Large-Aperture Submillimeter Telescope for polarization: BLAST-pol

The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a sub-orbital experiment designed to study the process of star formation in local galaxies (including the Milky Way) and in galaxies at cosmological distances. Using a 2m Cassegrain telescope, BLAST images the sky onto a focal plane, which consists of 270 bolometric detectors split between three arrays, observing simultaneously in 30% wide bands, centered at 250, 350, and 500 μm. The diffraction-limited optical system provides a resolution of 30" at 250 μm. The pointing system enables raster-like scans with a positional accuracy of ~30", reconstructed to better than 5" rms in postflight analysis. BLAST had two successful flights, from the Arctic in 2005, and from Antarctica in 2006, which provided the first high-resolution and large-area (~0.8−200 deg2) submillimeter surveys at these wavelengths. As a pathfinder for the SPIRE instrument on Herschel, BLAST shares with the ESA satellite similar focal plane technology and scientific motivation. A third flight in 2009 will see the instrument modified to be polarization-sensitive (BLAST-pol). With its unprecedented mapping speed and resolution, BLAST-pol will provide insights into Galactic star-forming nurseries, and give the necessary link between the larger, coarse resolution surveys and the narrow, resolved observations of star-forming structures from space and ground based instruments being commissioned in the next 5 years.

[1]  M. Halpern,et al.  SANEPIC: A Mapmaking Method for Time Stream Data from Large Arrays , 2007, 0711.3462.

[2]  James J. Bock,et al.  BLAST: RESOLVING THE COSMIC SUBMILLIMETER BACKGROUND , 2009, 0904.1205.

[3]  University of Chicago,et al.  Statistical Assessment of Shapes and Magnetic Field Orientations in Molecular Clouds through Polarization Observations , 2009, 0907.3730.

[4]  E. Zweibel,et al.  Magnetic field-line tangling and polarization measurements in clumpy molecular gas , 1990 .

[5]  Shaul Hanany,et al.  Millimeter-wave achromatic half-wave plate. , 2005, Applied optics.

[6]  Albert Stebbins,et al.  Statistics of cosmic microwave background polarization , 1997 .

[7]  Department of Physics,et al.  Simulations of polarized dust emission , 2006, astro-ph/0609143.

[8]  P. Ade,et al.  Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: experimental characterization. , 2006, Applied optics.

[9]  C. E. Jones,et al.  The Intrinsic Shapes of Molecular Cloud Fragments over a Range of Length Scales , 2002 .

[10]  E. Ostriker,et al.  Magnetically Aligned Velocity Anisotropy in the Taurus Molecular Cloud , 2008, 0802.2084.

[11]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[12]  Jessie L. Dotson,et al.  A Primer on Far‐Infrared Polarimetry , 2000 .

[13]  A. Murphy,et al.  The Planck High Frequency Instrument, a third generation CMB experiment, and a full sky submillimeter survey , 2003 .

[14]  D. Ward-Thompson,et al.  First Observations of the Magnetic Field Geometry in Prestellar Cores , 2000 .

[15]  W. White,et al.  A CMB polarization primer , 1997 .

[16]  Alyssa A. Goodman,et al.  Optical polarization maps of star-forming regions in Perseus, Taurus, and Ophiuchus , 1990 .

[17]  T. Phillips,et al.  Millimeter and Submillimeter Detectors for Astronomy , 2003 .

[18]  F. O. Alves,et al.  Optical polarimetry toward the Pipe nebula: revealing the importance of the magnetic field , 2008, 0806.1189.

[19]  James J. Bock,et al.  BLAST: A FAR-INFRARED MEASUREMENT OF THE HISTORY OF STAR FORMATION , 2009, 0904.1206.

[20]  R. F. Loewenstein,et al.  Results of SPARO 2003: Mapping Magnetic Fields in Giant Molecular Clouds , 2006 .

[21]  Edward J. Wollack,et al.  Three Year Wilkinson Microwave Anistropy Probe (WMAP) Observations: Polarization Analysis , 2006, astro-ph/0603450.

[22]  Luca Olmi,et al.  Optical designs for submillimeter-wave spherical-primary (sub)orbital telescopes and novel optimization techniques , 2002, SPIE Astronomical Telescopes + Instrumentation.

[23]  Zhi-Yun Li,et al.  Collapse of Magnetized Singular Isothermal Toroids. II. Rotation and Magnetic Braking , 2003, astro-ph/0311377.

[24]  Giampaolo Pisano,et al.  A review of metal mesh filters , 2006, SPIE Astronomical Telescopes + Instrumentation.

[25]  A. Chepurnov,et al.  Polarization of Dust Emission in Clumpy Molecular Clouds and Cores , 2006, astro-ph/0611324.

[26]  D. Ward-Thompson,et al.  SCUBA Polarization Measurements of the Magnetic Field Strengths in the L183, L1544, and L43 Prestellar Cores , 2003, astro-ph/0305604.

[27]  J. Hough,et al.  The Efficiency of Grain Alignment in Dense Interstellar Clouds: a Reassessment of Constraints from Near-Infrared Polarization , 2007, 0711.2536.

[28]  P. A. R. Ade,et al.  New artificial dielectric metamaterial and its application as a terahertz antireflection coating. , 2009, Applied optics.

[29]  M. Halpern,et al.  Breaking the ‘redshift deadlock’– I. Constraining the star formation history of galaxies with submillimetre photometric redshifts , 2001, astro-ph/0111547.

[30]  G. Kowal,et al.  Studies of Regular and Random Magnetic Fields in the ISM: Statistics of Polarization Vectors and the Chandrasekhar-Fermi Technique , 2008, 0801.0279.

[31]  M. Halpern,et al.  The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) 2005: A 4 deg2 Galactic Plane Survey in Vulpecula (ℓ = 59°) , 2007, 0711.3461.

[32]  Richard R. Harman Wilkinson Microwave Anisotropy Probe (WMAP) Attitude Estimation Filter Comparison , 2005 .

[33]  James J. Bock,et al.  BLAST OBSERVATIONS OF RESOLVED GALAXIES: TEMPERATURE PROFILES AND THE EFFECT OF ACTIVE GALACTIC NUCLEI ON FIR TO SUBMILLIMETER EMISSION , 2009 .

[34]  James J. Bock,et al.  Design and performance of feedhorn-coupled bolometer arrays for SPIRE , 2003, SPIE Astronomical Telescopes + Instrumentation.

[35]  James J. Bock,et al.  BLAST: CORRELATIONS IN THE COSMIC FAR-INFRARED BACKGROUND AT 250, 350, AND 500 μm REVEAL CLUSTERING OF STAR-FORMING GALAXIES , 2009, 0904.1200.

[36]  Mark E. Pittelkau,et al.  Kalman Filtering for Spacecraft System Alignment Calibration , 2001 .

[37]  Itziar Aretxaga,et al.  Over half of the far-infrared background light comes from galaxies at z ≥ 1.2 , 2009, Nature.

[38]  James J. Bock,et al.  Bolocam: a millimeter-wave bolometric camera , 1998, Astronomical Telescopes and Instrumentation.

[39]  P. A. R. Ade,et al.  MAXIPOL: Cosmic Microwave Background Polarimetry Using a Rotating Half-Wave Plate , 2006, astro-ph/0611394.

[40]  M. Halpern,et al.  The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) 2005: Calibration and Targeted Sources , 2004, SPIE Astronomical Telescopes + Instrumentation.

[41]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[42]  F. Markley Attitude Error Representations for Kalman Filtering , 2003 .

[43]  Enrico Fermi,et al.  Magnetic fields in spiral arms , 1953 .

[44]  Gopal Narayanan,et al.  Large-Scale Structure of the Molecular Gas in Taurus Revealed by High Linear Dynamic Range Spectral Line Mapping , 2008, 0802.2206.

[45]  David T. Chuss,et al.  Early Results from SPARO: Instrument Characterization and Polarimetry of NGC 6334 , 2004 .

[46]  James J. Bock,et al.  BLAST: THE MASS FUNCTION, LIFETIMES, AND PROPERTIES OF INTERMEDIATE MASS CORES FROM A 50 deg2 SUBMILLIMETER GALACTIC SURVEY IN VELA (ℓ ≈ 265°) , 2009, 0904.1207.

[47]  E. Ostriker,et al.  Theory of Star Formation , 2007, 0707.3514.

[48]  G. Novak,et al.  DISPERSION OF OBSERVED POSITION ANGLES OF SUBMILLIMETER POLARIZATION IN MOLECULAR CLOUDS , 2007, 0707.2818.

[49]  European Southern Observatory,et al.  The VLA 1.4 GHz Survey of the Extended Chandra Deep Field-South: First Data Release , 2007, 0804.2375.

[50]  Telemachos Ch. Mouschovias,et al.  Magnetic Fields and Star Formation: A Theory Reaching Adulthood , 1999 .

[51]  James J. Bock,et al.  SUBMILLIMETER NUMBER COUNTS FROM STATISTICAL ANALYSIS OF BLAST MAPS , 2009, 0906.0981.

[52]  Jan Swevers,et al.  Ground-based and airborne instrumentation for astronomy , 2010 .

[53]  S. Masi,et al.  First detection of polarization of the submillimetre diffuse galactic dust emission by Archeops , 2003, astro-ph/0306222.

[54]  U. Seljak,et al.  An all sky analysis of polarization in the microwave background , 1996, astro-ph/9609170.

[55]  H. Shinnaga,et al.  New Results on the Submillimeter Polarization Spectrum of the Orion Molecular Cloud , 2008, 0803.4185.

[56]  Giampaolo Pisano,et al.  Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation. , 2006, Applied optics.

[57]  S Masi,et al.  Instrument, Method, Brightness and Polarization Maps from the 2003 flight of BOOMERanG , 2005, astro-ph/0507509.

[58]  A. Lazarian,et al.  Grain Alignment by Radiation in Dark Clouds and Cores , 2005 .

[59]  Douglas Scott,et al.  Balloon-borne Large Aperture Submillimeter Telescope (BLAST). , 2004 .

[60]  Mark J. Devlin,et al.  BLAST autonomous daytime star cameras , 2006, SPIE Astronomical Telescopes + Instrumentation.

[61]  Matthew Joseph Griffin,et al.  SPIRE - Herschel's Submillimetre Camera and Spectrometer , 2003, SPIE Astronomical Telescopes + Instrumentation.