Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications.

It is demonstrated that 3D nanostructured polypyrrole (3D PPy) nanocomposites can be reinforced with PPy covered nanocellulose (PPy@nanocellulose) fibres to yield freestanding, mechanically strong and porosity optimised electrodes with large surface areas. Such PPy@nanocellulose reinforced 3D PPy materials can be employed as free-standing paper-like electrodes in symmetric energy storage devices exhibiting cell capacitances of 46 F g(-1), corresponding to specific electrode capacitances of up to ∼185 F g(-1) based on the weight of the electrode, and 5.5 F cm(-2) at a current density of 2 mA cm(-2). After 3000 charge/discharge cycles at 30 mA cm(-2), the reinforced 3D PPy electrode material also showed a cell capacitance corresponding to 92% of that initially obtained. The present findings open up new possibilities for the fabrication of high performance, low-cost and environmentally friendly energy-storage devices based on nanostructured paper-like materials.

[1]  Zhenan Bao,et al.  Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes , 2014, J. Mater. Chem. A.

[2]  P. Gatenholm,et al.  Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy , 2007 .

[3]  Gengchao Wang,et al.  Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application , 2011 .

[4]  Jared F. Mike,et al.  Recent advances in conjugated polymer energy storage , 2013 .

[5]  Chia-Chun Chen,et al.  Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance , 2010 .

[6]  C. Granqvist,et al.  Li diffusion in Ti oxyfluoride films: Thermal activation energy and jump length derived from impedance spectroscopy , 1996 .

[7]  Norio Miura,et al.  Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors , 2006 .

[8]  Guihua Yu,et al.  Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. , 2013, Nano letters.

[9]  Lijia Pan,et al.  3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices , 2013 .

[10]  Yi Cui,et al.  Highly conductive paper for energy-storage devices , 2009, Proceedings of the National Academy of Sciences.

[11]  Robert A. Huggins,et al.  Application of A-C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films , 1980 .

[12]  Maria Strømme,et al.  The influence of electrode and separator thickness on the cell resistance of symmetric cellulose–polypyrrole-based electric energy storage devices , 2014 .

[13]  Maria Strømme,et al.  Moisture sorption by cellulose powders of varying crystallinity. , 2004, International journal of pharmaceutics.

[14]  Wen Chen,et al.  Polypyrrole-coated paper for flexible solid-state energy storage , 2013 .

[15]  Maria Strømme,et al.  A novel high specific surface area conducting paper material composed of polypyrrole and Cladophora cellulose. , 2008, The journal of physical chemistry. B.

[16]  Lan Jiang,et al.  Highly Compression‐Tolerant Supercapacitor Based on Polypyrrole‐mediated Graphene Foam Electrodes , 2013, Advanced materials.

[17]  Shu-Hong Yu,et al.  Ultrathin W18O49 nanowire assemblies for electrochromic devices. , 2013, Nano letters.

[18]  L. Nyholm,et al.  Influence of the cellulose substrate on the electrochemical properties of paper-based polypyrrole electrode materials , 2012, Journal of Materials Science.

[19]  Robin H. A. Ras,et al.  Modifying Native Nanocellulose Aerogels with Carbon Nanotubes for Mechanoresponsive Conductivity and Pressure Sensing , 2013, Advanced materials.

[20]  Olli Ikkala,et al.  Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities , 2008 .

[21]  Zhenan Bao,et al.  Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles , 2013, Nature Communications.

[22]  Yi Cui,et al.  Nanostructured paper for flexible energy and electronic devices , 2013 .

[23]  Maria Strømme,et al.  Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties , 2012 .

[24]  Y. Tsai,et al.  Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor , 2012 .

[25]  M. Strømme,et al.  Translational study between structure and biological response of nanocellulose from wood and green algae , 2014 .

[26]  O. Ikkala,et al.  Facile method for stiff, tough, and strong nanocomposites by direct exfoliation of multilayered graphene into native nanocellulose matrix. , 2012, Biomacromolecules.

[27]  Xiaogang Han,et al.  Natural cellulose fiber as substrate for supercapacitor. , 2013, ACS nano.

[28]  Zhijun Shi,et al.  Nanocellulose electroconductive composites. , 2013, Nanoscale.

[29]  Huaping Wang,et al.  Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. , 2011, The journal of physical chemistry. B.

[30]  L. Nyholm,et al.  Efficient high active mass paper-based energy-storage devices containing free-standing additive-less polypyrrole-nanocellulose electrodes , 2014 .

[31]  Alvo Aabloo,et al.  Direct chemical synthesis of pristine polypyrrole hydrogels and their derived aerogels for high power density energy storage applications , 2013 .

[32]  Nerilso Bocchi,et al.  Flexible and high surface area composites of carbon fiber, polypyrrole, and poly(DMcT) for supercapacitor electrodes , 2013 .

[33]  Feng Li,et al.  Graphene–Cellulose Paper Flexible Supercapacitors , 2011 .

[34]  M. Strømme,et al.  Membrane characterization and solute diffusion in porous composite nanocellulose membranes for hemodialysis , 2013, Cellulose.

[35]  A. Mihranyan Cellulose from cladophorales green algae: From environmental problem to high‐tech composite materials , 2011 .

[36]  Majid Beidaghi,et al.  Development of a green supercapacitor composed entirely of environmentally friendly materials. , 2013, ChemSusChem.

[37]  L. Nyholm,et al.  Rapid potential step charging of paper-based polypyrrole energy storage devices , 2012 .

[38]  L. Nyholm,et al.  A Nanocellulose Polypyrrole Composite Based on Microfibrillated Cellulose from Wood , 2010, The journal of physical chemistry. B.

[39]  G. Metreveli,et al.  A Size‐Exclusion Nanocellulose Filter Paper for Virus Removal , 2014, Advanced healthcare materials.

[40]  Maria Forsyth,et al.  Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors , 2007 .

[41]  L. Nyholm,et al.  Toward Flexible Polymer and Paper‐Based Energy Storage Devices , 2011, Advanced materials.

[42]  G. Chen,et al.  Electrochemical Capacitance of a Nanoporous Composite of Carbon Nanotubes and Polypyrrole , 2002 .

[43]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[44]  Chen Zhang,et al.  Carbon nanotube reinforced polypyrrole nanowire network as a high-performance supercapacitor electrode , 2013 .

[45]  L. Nyholm,et al.  Paper‐Based Energy‐Storage Devices Comprising Carbon Fiber‐Reinforced Polypyrrole‐Cladophora Nanocellulose Composite Electrodes , 2012 .

[46]  Grzegorz Milczarek,et al.  Renewable Cathode Materials from Biopolymer/Conjugated Polymer Interpenetrating Networks , 2012, Science.

[47]  L. Nyholm,et al.  Ultrafast All-Polymer Paper-Based Batteries , 2009, Nano letters.

[48]  Zhenan Bao,et al.  Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity , 2012, Proceedings of the National Academy of Sciences.

[49]  P. Novák,et al.  Electrochemically Active Polymers for Rechargeable Batteries. , 1997, Chemical reviews.

[50]  F. Béguin,et al.  Supercapacitors from nanotubes/polypyrrole composites , 2001 .

[51]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[52]  Jinkee Hong,et al.  Polypyrrole decorated cellulose for energy storage applications , 2012 .

[53]  Dieter Klemm,et al.  Nanocelluloses: a new family of nature-based materials. , 2011, Angewandte Chemie.

[54]  Avinash Balakrishnan,et al.  Highly super capacitive electrodes made of graphene/poly(pyrrole). , 2011, Chemical communications.

[55]  Feiyu Kang,et al.  Rational synthesis of MnO2/conducting polypyrrole@carbon nanofiber triaxial nano-cables for high-performance supercapacitors , 2012 .

[56]  Jing Zhang,et al.  Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes , 2013 .

[57]  O. Inganäs,et al.  Conducting Polymer Hydrogels as 3D Electrodes: Applications for Supercapacitors , 1999 .

[58]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[59]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[60]  Wan-Jin Lee,et al.  Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole , 2008 .

[61]  Hyun-Kon Song,et al.  Redox‐Active Polypyrrole: Toward Polymer‐Based Batteries , 2006 .

[62]  Qiang Liu,et al.  Supercapacitor electrodes based on polyaniline–silicon nanoparticle composite , 2010 .

[63]  A. Dufresne,et al.  TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges. , 2012, ACS applied materials & interfaces.