SPC Procedures for Monitoring Autocorrelated Processes

Abstract The inference about the statistical properties of quality control methodologies is based on the assumptions of normality and independence. In real industrial environments though process data is often correlated or exhibits some serial dependence affecting the efficiency of Statistical Process Control (SPC) methodologies. New technology gives managers the option of using more sophisticated SPC models which more accurately reflect the process being monitored, by relaxing some of the assumptions. The aim of this paper is to present, to apply and to evaluate control charts that are designed to account for autocorrelation.

[1]  J. Macgregor,et al.  The exponentially weighted moving variance , 1993 .

[2]  Lei Xie,et al.  Statistical Monitoring of Dynamic Multivariate Processes - Part 1. Modeling Autocorrelation and Cross-correlation , 2006 .

[3]  Su-Fen Yang,et al.  Effects of imprecise measurement on the two dependent processes control for the autocorrelated observations , 2005 .

[4]  Wolfgang Schmid,et al.  On EWMA Charts for Time Series , 1997 .

[5]  Jeffrey E. Jarrett,et al.  Transfer Function Modeling of Processes with Dynamic Inputs , 2002 .

[6]  P Winkel,et al.  Serial correlation of quality control data–on the use of proper control charts , 2004, Scandinavian journal of clinical and laboratory investigation.

[7]  W. Jiang,et al.  AVERAGE RUN LENGTH COMPUTATION OF ARMA CHARTS FOR STATIONARY PROCESSES , 2001 .

[8]  A. A. Kalgonda,et al.  Multivariate Quality Control Chart for Autocorrelated Processes , 2004, Journal of applied statistics.

[9]  John N. Dyer,et al.  A simulation study and evaluation of multivariate forecast based control charts applied to ARMA processes , 2003 .

[10]  G. Runger Multivariate statistical process control for autocorrelated processes , 1996 .

[11]  H. Brian Hwarng Detecting process mean shift in the presence of autocorrelation: a neural-network based monitoring scheme , 2004 .

[12]  K. Govindaraju,et al.  Effects of correlation on fraction non-conforming statistical process control procedures , 1998 .

[13]  Fu-Kwun Wang,et al.  A simple data transformation of auto-correlated data for SPC , 2005 .

[14]  Xia Pan,et al.  Applying State Space to SPC: Monitoring Multivariate Time Series , 2004 .

[15]  Douglas H. Timmer,et al.  The development and evaluation of CUSUM-based control charts for an AR(1) process , 1998 .

[16]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[17]  Marion R. Reynolds,et al.  Evaluating properties of variable sampling interval control charts , 1995 .

[18]  Emmanuel Yashchin,et al.  Performance of CUSUM control schemes for serially correlated observations , 1993 .

[19]  H. Hotelling Multivariate Quality Control-illustrated by the air testing of sample bombsights , 1947 .

[20]  Charles P. Quesenberry,et al.  DPV Q charts for start-up processes and short or long runs , 1991 .

[21]  Smiley W. Cheng,et al.  MAX-CUSUM CHART FOR AUTOCORRELATED PROCESSES , 2005 .

[22]  A. Erhan Mergen,et al.  Dependence bias in conventional p-charts and its correction with an approximate lot quality distribution , 1987 .

[23]  Deborah F. Cook,et al.  An augmented neural network classification approach to detecting mean shifts in correlated manufacturing process parameters , 2004 .

[24]  Jiangbin Yang,et al.  Dynamic Response of Residuals to External Deviations in a Controlled Production Process , 2000, Technometrics.

[25]  Bonnie K. Ray,et al.  A note on moving average forecasts of long memory processes with an application to quality control , 2002 .

[26]  Daniel W. Apley,et al.  Design of Exponentially Weighted Moving Average Control Charts for Autocorrelated Processes With Model Uncertainty , 2003, Technometrics.

[27]  Walton M. Hancock,et al.  Statistical quality control for correlated samples , 1990 .

[28]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[29]  Layth C. Alwan AUTOCORRELATION: FIXED VERSUS VARIABLE CONTROL LIMITS , 1991 .

[30]  L. K. Chan,et al.  A multivariate control chart for detecting linear trends , 1994 .

[31]  Frederick W. Faltin,et al.  Statistical Control by Monitoring and Feedback Adjustment , 1999, Technometrics.

[32]  Sven Knoth,et al.  Control Charts for Time Series: A Review , 2004 .

[33]  Deborah F. Cook,et al.  Utilization of neural networks for the recognition of variance shifts in correlated manufacturing process parameters , 2001 .

[34]  Wei Jiang,et al.  Proportional Integral Derivative Charts for Process Monitoring , 2002, Technometrics.

[35]  Connie M. Borror,et al.  EWMA techniques for computer intrusion detection through anomalous changes in event intensity , 2002 .

[36]  Joseph W. McKean,et al.  Studentized Autoregressive Time Series Residuals , 2003, Comput. Stat..

[37]  Suzana Leitao Russo,et al.  Control charts for monitoring autocorrelated processes based on Neural Networks model , 2009, 2009 International Conference on Computers & Industrial Engineering.

[38]  J. Bert Keats,et al.  MONITORING THE AVAILABILITY OF ASSETS WITH BINOMIAL AND CORRELATED OBSERVATIONS , 1999 .

[39]  Duane DeSieno,et al.  Adding a conscience to competitive learning , 1988, IEEE 1988 International Conference on Neural Networks.

[40]  George C. Runger,et al.  Control Charts for Monitoring Fault Signatures: Cuscore versus GLR , 2003 .

[41]  Wei Jiang,et al.  A New SPC Monitoring Method: The ARMA Chart , 2000, Technometrics.

[42]  Lei Xie,et al.  Statistical monitoring of dynamic multivariate processes. Part 2. Identifying fault magnitude and signature , 2006 .

[43]  Erik Johansson,et al.  Multivariate process and quality monitoring applied to an electrolysis process. : Part II - Multivariate time-series analysis of lagged latent variables , 1998 .

[44]  Ker-Ming Lee,et al.  Shifts recognition in correlated process data using a neural network , 2001 .

[45]  P. N. Paraskevopoulos,et al.  Modern Control Engineering , 2001 .

[46]  Alberto Luceno George,et al.  Influence of the sampling interval, decision limit and autocorrelation on the average run length in Cusum charts , 2000 .

[47]  Nien Fan Zhang,et al.  Detection capability of residual control chart for stationary process data , 1997 .

[48]  William H. Woodall,et al.  Phase I Analysis of Linear Profiles With Calibration Applications , 2004, Technometrics.

[49]  U. N. Bhat,et al.  Attribute Control Charts for Markov Dependent Production Processes , 1990 .

[50]  Theodora Kourti,et al.  Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start‐ups and grade transitions , 2003 .

[51]  Masanao Aoki,et al.  Notes on economic time series analysis , 1983 .

[52]  Armin Shmilovici,et al.  Context-Based Statistical Process Control , 2003, Technometrics.

[53]  Connie M. Borror,et al.  Model‐based control chart for autoregressive and correlated data , 2002 .

[54]  Philippe Castagliola,et al.  Autocorrelated SPC for Non‐Normal Situations , 2005 .

[55]  Douglas C. Montgomery,et al.  Some Statistical Process Control Methods for Autocorrelated Data , 1991 .

[56]  Marion R. Reynolds,et al.  EWMA and CUSUM control charts in the presence of correlation , 1997 .

[57]  Charles W. Champ,et al.  Attribute Charts for Monitoring a Dependent Process , 2007, Qual. Reliab. Eng. Int..

[58]  William H. Woodall,et al.  A review and analysis of cause-selecting control charts , 1993 .

[59]  Shiv Gopal Kapoor,et al.  An Enhanced Quality Evaluation System for Continuous Manufacturing Processes, Part 1: Theory , 1990 .

[60]  Mohamed Limam,et al.  On SPC for Short Run Autocorrelated Data , 2005 .

[61]  Charles W. Champ,et al.  Study of average run lengths for supplementary runs rules in the presence of autocorrelation , 1994 .

[62]  S. J. Lee,et al.  The Effects of Autocorrelation and Outliers on Two-Sided Tolerance Limits , 1999 .

[63]  Richard A. Johnson,et al.  The Effect of Serial Correlation on the Performance of CUSUM Tests II , 1974 .

[64]  B. W. Ang,et al.  ARL properties of a sample autocorrelation chart , 1997 .

[65]  Marion R. Reynolds,et al.  Control Charts for Monitoring the Mean and Variance of Autocorrelated Processes , 1999 .

[66]  Douglas H. Timmer,et al.  Change Point Estimates for the Parameters of an AR(1) Process , 2003 .

[67]  Victor R. Prybutok,et al.  Comparison of fixed versus variable samplmg interval shewhart control charts in the presence of positively autocorrelated data , 1997 .

[68]  Wolfgang Schmid,et al.  On the run length of a Shewhart chart for correlated data , 1995 .

[69]  Bhavik R. Bakshi,et al.  Multiscale SPC using wavelets: Theoretical analysis and properties , 2003 .

[70]  Marion R. Reynolds,et al.  Robustness to non-normality and autocorrelation of individuals control charts , 2000 .

[71]  John R. English,et al.  Modeling and process disturbance detection of autocorrelated data , 2001 .

[72]  H. Brian Hwarng * Simultaneous identification of mean shift and correlation change in AR(1) processes , 2005 .

[73]  Bikash Bhadury,et al.  Robustness of measures of common cause sigma in presence of data correlation , 2004 .

[74]  V. Vapnik Estimation of Dependences Based on Empirical Data , 2006 .

[75]  Youn Min Chou,et al.  Systematic Patterns in T2 Charts , 2003 .

[76]  G. Robin Henderson,et al.  EWMA and industrial applications to feedback adjustment and control , 2001 .

[77]  Su-Fen Yang,et al.  An approach to controlling two dependent process steps with autocorrelated observations , 2005 .

[78]  Stephen V. Crowder,et al.  Small Sample Properties of an Adaptive Filter Applied to Low Volume SPC , 2001 .

[79]  T. Harris,et al.  Statistical process control procedures for correlated observations , 1991 .

[80]  Harriet Black Nembhard,et al.  INTEGRATED PROCESS CONTROL FOR STARTUP OPERATIONS , 1998 .

[81]  Irad Ben-Gal,et al.  Statistical process control via context modeling of finite-state processes: an application to production monitoring , 2004 .

[82]  Sven Knoth,et al.  Autocorrelation and tolerance limits , 2003 .

[83]  S. A. Vander Wiel,et al.  Monitoring processes that wander using integrated moving average models , 1996 .

[84]  David E. Booth,et al.  Joint Estimation: SPC Method for Short-Run Autocorrelated Data , 2001 .

[85]  Christos Georgakis,et al.  Disturbance detection and isolation by dynamic principal component analysis , 1995 .

[86]  A. Vasilopoulos,et al.  Modification of Control Chart Limits in the Presence of Data Correlation , 1978 .

[87]  C. Mastrangelo,et al.  Multivariate Autocorrelated Processes: Data and Shift Generation , 2002 .

[88]  Murat Caner Testik,et al.  Model Inadequacy and Residuals Control Charts for Autocorrelated Processes , 2005 .

[89]  Chih-Ming Hsu,et al.  Analysis of variations in a multi-variate process using neural networks , 2003 .

[90]  Richard A. Davis,et al.  Introduction to time series and forecasting , 1998 .

[91]  J. A. Nachlas,et al.  X charts with variable sampling intervals , 1988 .

[92]  George C. Runger,et al.  Model-Based and Model-Free Control of Autocorrelated Processes , 1995 .

[93]  Michael D. Conerly,et al.  The Reverse Moving Average Control Chart for Monitoring Autocorrelated Processes , 2003 .

[94]  Layth C. Alwan Effects of autocorrelation on control chart performance , 1992 .

[95]  Marion R. Reynolds,et al.  Cusum Charts for Monitoring an Autocorrelated Process , 2001 .

[96]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[97]  Herbert Moskowitz,et al.  Run-Length Distributions of Special-Cause Control Charts for Correlated Processes , 1994 .

[98]  Kostas Triantafyllopoulos,et al.  Multivariate Control Charts Based on Bayesian State Space Models , 2006, Qual. Reliab. Eng. Int..

[99]  Jianjun Shi,et al.  The GLRT for statistical process control of autocorrelated processes , 1999 .

[100]  D. Apley,et al.  The Autoregressive T2 Chart for Monitoring Univariate Autocorrelated Processes , 2002 .

[101]  Statistical Methods for Quality Improvement, 2nd Ed. , 2000 .

[102]  George C. Runger,et al.  Batch-means control charts for autocorrelated data , 1996 .

[103]  Kuo-Ching Chiou,et al.  Optimal Design of VSI ―X Control Charts for Monitoring Correlated Samples , 2005 .

[104]  W. J. Padgett,et al.  On the α-risks for shewhart control charts , 1992 .

[105]  Kuiyuan Li,et al.  The effect of autocorrelation on the ewma maxmin tolerance limits , 2002 .

[106]  Nien Fan Zhang,et al.  A statistical control chart for stationary process data , 1998 .

[107]  John M. Charnes,et al.  Tests for special causes with multivariate autocorrelated data , 1995, Comput. Oper. Res..

[108]  Daniel W. Apley,et al.  Autocorrelated process monitoring using triggered cuscore charts , 2002 .

[109]  Ratna Babu Chinnam,et al.  Support vector machines for recognizing shifts in correlated and other manufacturing processes , 2002 .

[110]  Robert V. Baxley,et al.  EWMA Control Charts for the Smallest and Largest Observations , 1999 .

[111]  Wei Jiang,et al.  Some properties of the ARMA control chart , 2001 .

[112]  George C. Runger,et al.  Average run lengths for cusum control charts applied to residuals , 1995 .

[113]  Ansgar Steland,et al.  On detecting jumps in time series: nonparametric setting , 2004 .

[114]  John R. English,et al.  Detecting changes in autoregressive processes with X¯ and EWMA charts , 2000 .

[115]  Shien-Ming Wu,et al.  Time series and system analysis with applications , 1983 .

[116]  Wolfgang Schmid,et al.  CUSUM control schemes for Gaussian processes , 1997 .

[117]  Douglas C. Montgomery,et al.  Using Control Charts to Monitor Process and Product Quality Profiles , 2004 .

[118]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[119]  Herbert Moskowitz,et al.  Control Charts in the Presence of Data Correlation , 1992 .

[120]  Chih-Chou Chiu,et al.  Using radial basis function neural networks to recognize shifts in correlated manufacturing process parameters , 1998 .

[121]  Victor R. Prybutok,et al.  A Simulation Study for Comparing Fixed with Variable Sampling Interval Shewhart X-Bar Control Charts in the Presence of Undetected Autocorrelated Data , 1997, Simul..

[122]  Panayiotis Theodossiou Predicting Shifts in the Mean of a Multivariate Time Series Process: An Application in Predicting Business Failures , 1993 .

[123]  William A. Stimson,et al.  Monitoring Serially-Dependent Processes with Attribute Data , 1996 .

[124]  Herbert Moskowitz,et al.  [Run-Length Distributions of Special-Cause Control Charts for Correlated Processes]: Rejoinder , 1994 .

[125]  John C. Young,et al.  Monitoring a multivariate step process , 1996 .

[126]  Fred Spiring,et al.  Introduction to Statistical Quality Control , 2007, Technometrics.

[127]  Harriet Black Nembhard,et al.  Adaptive Forecast-Based Monitoring for Dynamic Systems , 2003, Technometrics.

[128]  Wee-Tat Cheong,et al.  A Control Scheme for High-Yield Correlated Production under Group Inspection , 2006 .

[129]  George C. Runger,et al.  Assignable Causes and Autocorrelation: Control Charts for Observations or Residuals? , 2002 .

[130]  Min Xie,et al.  Study of a Markov model for a high-quality dependent process , 2000 .

[131]  Sven Knoth,et al.  Control Charts for Time Series , 1997 .

[132]  Rassoul Noorossana,et al.  Using Neural Networks to Detect and Classify Out‐of‐control Signals in Autocorrelated Processes , 2003 .

[133]  Loon Ching Tang,et al.  A CUSUM Scheme for Autocorrelated Observations , 2002 .

[134]  M. Rosołowski,et al.  EWNA charts for monitoring the mean and the autocovariances of stationary processes , 2006 .

[135]  Changsoon Park,et al.  A statistical process control procedure with adjustments and monitoring , 2001 .

[136]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[137]  Douglas C. Montgomery,et al.  SPC with correlated observations for the chemical and process industries , 1995 .

[138]  S. W. Roberts,et al.  Control Chart Tests Based on Geometric Moving Averages , 2000, Technometrics.

[139]  J. Edward Jackson,et al.  A User's Guide to Principal Components. , 1991 .

[140]  Marion R. Reynolds,et al.  Variable Sampling Interval X Charts in the Presence of Correlation , 1996 .

[141]  Douglas C. Montgomery,et al.  Statistical process monitoring with principal components , 1996 .

[142]  Russell A. Boyles,et al.  Phase I Analysis for Autocorrelated Processes , 2000 .

[143]  Marion R. Reynolds,et al.  EWMA CONTROL CHARTS FOR MONITORING THE MEAN OF AUTOCORRELATED PROCESSES , 1999 .

[144]  Ross Sparks Applications: CUSUM Charts for AR1 Data: are they worth the Effort? , 2000 .

[145]  Harriet Black Nembhard Simulation using the state-space representation of noisy dynamic systems to determine effective integrated process control designs , 1998 .

[146]  J. Edward Jackson,et al.  A User's Guide to Principal Components: Jackson/User's Guide to Principal Components , 2004 .

[147]  Wei Jiang,et al.  Improved Design of Proportional Integral Derivative Charts , 2006 .

[148]  Layth C. Alwan,et al.  Time-Series Modeling for Statistical Process Control , 1988 .

[149]  Fugee Tsung,et al.  Comparison of the cuscore, GLRT and cusum control charts for detecting a dynamic mean change , 2005 .

[150]  David E. Booth,et al.  A Neural Network Approach to the Detection of Nuclear Material Losses , 1996, J. Chem. Inf. Comput. Sci..

[151]  Qiang Chen,et al.  Computer intrusion detection through EWMA for autocorrelated and uncorrelated data , 2003, IEEE Trans. Reliab..

[152]  N. L. Johnson,et al.  Systems of frequency curves generated by methods of translation. , 1949, Biometrika.

[153]  Wolfgang Schmid,et al.  Some properties of the EWMA control chart in the presence of autocorrelation , 1997 .

[154]  Daniel Y. T. Fong,et al.  The analysis of process variation transmission with multivariate measurements , 1998 .

[155]  Wei Jiang,et al.  Multivariate Control Charts for Monitoring Autocorrelated Processes , 2004 .

[156]  Chao-Yu Chou,et al.  The effect of correlation on the economic design of warning limit X-bar charts , 2003 .

[157]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[158]  W. Woodall,et al.  The Performance of Multivariate Control Charts in the Presence of Measurement Error , 2001 .

[159]  Kwok-Leung Tsui,et al.  A mean-shift pattern study on integration of SPC and APC for process monitoring , 1999 .