Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance.

Solar cells based on organometallic halide perovskite absorber layers are emerging as a high-performance photovoltaic technology. Using highly sensitive photothermal deflection and photocurrent spectroscopy, we measure the absorption spectrum of CH3NH3PbI3 perovskite thin films at room temperature. We find a high absorption coefficient with particularly sharp onset. Below the bandgap, the absorption is exponential over more than four decades with an Urbach energy as small as 15 meV, which suggests a well-ordered microstructure. No deep states are found down to the detection limit of ∼1 cm(-1). These results confirm the excellent electronic properties of perovskite thin films, enabling the very high open-circuit voltages reported for perovskite solar cells. Following intentional moisture ingress, we find that the absorption at photon energies below 2.4 eV is strongly reduced, pointing to a compositional change of the material.

[1]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[2]  Theodore D. Moustakas,et al.  DISORDER AND THE OPTICAL ABSORPTION EDGE OF HYDROGENATED AMORPHOUS SILICON , 1981 .

[3]  F. Angelis MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties. , 2014 .

[4]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[5]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[6]  Philip Schulz,et al.  Interface energetics in organo-metal halide perovskite-based photovoltaic cells , 2014 .

[7]  Anders Hagfeldt,et al.  Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells. , 2013, The journal of physical chemistry letters.

[8]  R. Schropp,et al.  Beneficial effect of a low deposition temperature of hot-wire deposited intrinsic amorphous silicon for solar cells , 2003 .

[9]  David Cahen,et al.  Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells. , 2014, The journal of physical chemistry letters.

[10]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[11]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[12]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[13]  Milan Vanecek,et al.  Fourier-transform photocurrent spectroscopy of microcrystalline silicon for solar cells , 2002 .

[14]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[15]  Warren Jackson,et al.  DIRECT MEASUREMENT OF GAP STATE ABSORPTION IN HYDROGENATED AMORPHOUS SILICON BY PHOTOTHERMAL DEFLECTION SPECTROSCOPY , 1982 .

[16]  F. Urbach The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids , 1953 .

[17]  Alex K.-Y. Jen,et al.  High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. , 2013, Nano letters.

[18]  M. Treviño,et al.  Noradrenergic ‘Tone’ Determines Dichotomous Control of Cortical Spike-Timing-Dependent Plasticity , 2012, Scientific Reports.

[19]  J. Holovský Fourier Transform Photocurrent Spectroscopy on Non-Crystalline Semiconductors , 2011 .

[20]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[21]  Martin A. Green,et al.  Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients , 2008 .

[22]  S. Niki,et al.  Dielectric function of Cu(In, Ga)Se2-based polycrystalline materials , 2013 .

[23]  Jean Manca,et al.  The Relation Between Open‐Circuit Voltage and the Onset of Photocurrent Generation by Charge‐Transfer Absorption in Polymer : Fullerene Bulk Heterojunction Solar Cells , 2008 .

[24]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[25]  D. C. Law,et al.  Band gap‐voltage offset and energy production in next‐generation multijunction solar cells , 2011 .

[26]  Nam-Gyu Park,et al.  Organolead Halide Perovskite: New Horizons in Solar Cell Research , 2014 .

[27]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[28]  A. Rockett,et al.  Effect of Ga content on defect states in CuIn 1¿x Ga x Se 2 photovoltaic devices , 2002 .

[29]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[30]  E. Yablonovitch,et al.  Limiting efficiency of silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[31]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[32]  Gary Hodes,et al.  Perovskite-Based Solar Cells , 2013, Science.

[33]  M. Stuckelberger,et al.  Time evolution of surface defect states in hydrogenated amorphous silicon studied by photothermal and photocurrent spectroscopy and optical simulation , 2012 .

[34]  Francisco Fabregat-Santiago,et al.  Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[35]  Tsai,et al.  Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study. , 1985, Physical review. B, Condensed matter.

[36]  Shane Johnson,et al.  Temperature dependence of the Urbach edge in GaAs , 1995 .

[37]  N. Park,et al.  Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3 , 2012, Nanoscale Research Letters.

[38]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[39]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[40]  P. Kamat Evolution of Perovskite Photovoltaics and Decrease in Energy Payback Time , 2013 .

[41]  Eli Yablonovitch,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2012, IEEE Journal of Photovoltaics.

[42]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[43]  Giuseppe Gigli,et al.  MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties , 2013 .

[44]  K. Weiser,et al.  Suppression of interference fringes in absorption measurements on thin films , 1986 .

[45]  Aron Walsh,et al.  Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles , 2013, 1309.4215.

[46]  M. Taguchi,et al.  24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer , 2013, IEEE Journal of Photovoltaics.

[47]  Vitalij K. Pecharsky,et al.  Crystal structure, magnetic properties, and the magnetocaloric effect of Gd5Rh4 and GdRh , 2013 .