Temporal reasoning with constraints

This dissertation is focused on representing and reasoning about temporal information. We design general temporal languages supported by specialized efficient inference procedures. The contribution is in combining the existing logic-based temporal reasoning languages with the existing temporal constraint models, and in designing new efficient inference algorithms for the combined languages. We explore a specific combination of Datalog, a polynomial fragment of logic programming, with Temporal Constraint Satisfaction Problems (TCSP). To render this combination meaningful, attention is given to the formal syntax, semantics and the inference algorithms employed. We address some historical challenges relevant to the introduction of time and constraints into logic programming. The dissertation surveys and develops new and improved temporal constraint processing algorithms. When processing traditional Constraint Satisfaction Problems (CSP), path-consistency (PC) algorithms are polynomial. We demonstrate that when processing temporal constraints, PC is exponential, and thus does not scale up. To remedy this problem, two new polynomial algorithms are introduced: Upper Lower Tightening (ULT) and Loose Path Consistency (LPC). These algorithms are complete for a class of problems, called the STAR class. The empirical evaluation of these algorithms demonstrates a substantial performance improvement (up to six orders of magnitude) relative to other algorithms. We also demonstrate the existence of a phase transition for TCSPs.

[1]  Y. Shoham Reasoning About Change: Time and Causation from the Standpoint of Artificial Intelligence , 1987 .

[2]  Lenhart K. Schubert,et al.  Efficient Temporal Reasoning through Timegraphs , 1993, IJCAI.

[3]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[4]  Peter Jonsson,et al.  Maximal Tractable Subclasses of Allen's Interval Algebra: Preliminary Report , 1996, AAAI/IAAI, Vol. 1.

[5]  Dale Miller,et al.  A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple Unification , 1991, J. Log. Comput..

[6]  F. Pfenning Logic programming in the LF logical framework , 1991 .

[7]  Malik Ghallab,et al.  Managing Efficiently Temporal Relations Through Indexed Spanning Trees , 1989, IJCAI.

[8]  Peter van Beek,et al.  Reasoning About Qualitative Temporal Information , 1990, Artif. Intell..

[9]  Norman Sadeh,et al.  Look-ahead techniques for micro-opportunistic job shop scheduling , 1992 .

[10]  P. Gilmore,et al.  A Characterization of Comparability Graphs and of Interval Graphs , 1964, Canadian Journal of Mathematics.

[11]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[12]  Antony Galton,et al.  A Critical Examination of Allen's Theory of Action and Time , 1990, Artif. Intell..

[13]  Patrick J. Hayes,et al.  Short Time Periods , 1987, IJCAI.

[14]  P. V. Beek Exact and approximate reasoning about qualitative temporal relations , 1992 .

[15]  Drew McDermott,et al.  Temporal Data Base Management , 1987, Artif. Intell..

[16]  David Harel,et al.  Horn Clauses Queries and Generalizations , 1985, J. Log. Program..

[17]  Antony Galton,et al.  Reified Temporal Theories and How to Unreify Them , 1991, IJCAI.

[18]  Rina Dechter,et al.  Network-Based Heuristics for Constraint-Satisfaction Problems , 1987, Artif. Intell..

[19]  Peter J. Stuckey,et al.  A Constraint Logic Programming Shell , 1990, PLILP.

[20]  Yuval Shahar,et al.  Knowledge-based temporal abstraction in clinical domains , 1996, Artif. Intell. Medicine.

[21]  Lee Naish,et al.  Higher-order logic programming , 1996 .

[22]  Drew McDermott,et al.  A Temporal Logic for Reasoning About Processes and Plans , 1982, Cogn. Sci..

[23]  Han Reichgelt,et al.  The Token Reification Approach to Temporal Reasoning , 1996, Artif. Intell..

[24]  André Bouchet,et al.  Reducing prime graphs and recognizing circle graphs , 1987, Comb..

[25]  Andrei Mantsivoda,et al.  Flang and its Implementation , 1993, PLILP.

[26]  Ron Shamir,et al.  Algorithms and Complexity for Reasoning about Time , 1992, AAAI.

[27]  C. L. Hamblin Instants and intervals. , 1971, Studium generale; Zeitschrift fur die Einheit der Wissenschaften im Zusammenhang ihrer Begriffsbildungen und Forschungsmethoden.

[28]  Rina Dechter,et al.  From Local to Global Consistency , 1990, Artif. Intell..

[29]  Jan Chomicki,et al.  Depth-Bounded Bottom-Up Evaluation of Logic Program , 1995, J. Log. Program..

[30]  Massimo Poesio,et al.  Metric Constraints for Maintaining Appointments: Dates and Repeated Activities , 1991, AAAI.

[31]  Manolis Koubarakis,et al.  From Local to Global Consistency in Temporal Constraint Networks , 1995, Theor. Comput. Sci..

[32]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[33]  Pascal Van Hentenryck,et al.  The Constraint Logic Programming Language CHIP , 1988, FGCS.

[34]  Frédéric Benhamou,et al.  Programming in CLP(BNR) , 1993, PPCP.

[35]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..

[36]  Bernhard Nebel,et al.  Reasoning about temporal relations: a maximal tractable subclass of Allen's interval algebra , 1994, JACM.

[37]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[38]  Wen-Lian Hsu,et al.  Recognizing circle graphs in polynomial time , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[39]  Henry A. Kautz,et al.  Constraint Propagation Algorithms for Temporal Reasoning , 1986, AAAI.

[40]  Andreas Podelski,et al.  Towards a Meaning of LIFE , 1991, J. Log. Program..

[41]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[42]  Eddie Schwalb,et al.  A theory of time and temporal incidence based on instants and periods , 1996, Proceedings Third International Workshop on Temporal Representation and Reasoning (TIME '96).

[43]  Rolf H. Möhring,et al.  An Incremental Linear-Time Algorithm for Recognizing Interval Graphs , 1989, SIAM J. Comput..

[44]  Martin Charles Golumbic,et al.  A combinatorial approach to temporal reasoning , 1990, Proceedings of the 5th Jerusalem Conference on Information Technology, 1990. 'Next Decade in Information Technology'.

[45]  J. Lloyd Foundations of Logic Programming , 1984, Symbolic Computation.

[46]  Manolis Koubarakis Dense Time and Temporal Constraints with 6 = , 1992 .

[47]  James F. Allen Towards a General Theory of Action and Time , 1984, Artif. Intell..

[48]  Philippe Codognet,et al.  A Minimal Extension of the WAM for clp(FD) , 1993, ICLP.

[49]  Klaus Nökel,et al.  Convex Relations between Time Intervalls , 1989, ÖGAI.

[50]  Peter van Beek,et al.  The Design and Experimental Analysis of Algorithms for Temporal Reasoning , 1995, J. Artif. Intell. Res..

[51]  Scott D. Goodwin,et al.  Persistence in continuous first order temporal logics , 1990 .

[52]  Yuval Shahar,et al.  A knowledge-based method for temporal abstraction of clinical data , 1995 .

[53]  Michael J. Maher,et al.  Constraint Logic Programming: A Survey , 1994, J. Log. Program..

[54]  Jeffrey D. Uuman Principles of database and knowledge- base systems , 1989 .

[55]  Marc B. Vilain,et al.  A System for Reasoning About Time , 1982, AAAI.

[56]  Wojciech A. Trybulec Partially Ordered Sets , 1990 .

[57]  Rina Dechter,et al.  Temporal Reasoning with Constraints on Fluents and Events , 1994, AAAI.

[58]  Lenhart K. Schubert,et al.  ON COMPUTING THE MINIMAL LABELS IN TIME POINT ALGEBRA NETWORKS , 1995, Comput. Intell..

[59]  Peter van Beek,et al.  Approximation Algorithms for Temporal Reasoning , 1989, IJCAI.

[60]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[61]  Thomas C. Henderson,et al.  Arc and Path Consistency Revisited , 1986, Artif. Intell..

[62]  Yuval Shahar,et al.  A Framework for Knowledge-Based Temporal Abstraction , 1997, Artif. Intell..

[63]  Patrick J. Hayes,et al.  The Naive Physics Manifesto , 1990, The Philosophy of Artificial Intelligence.

[64]  Kenneth M. Kahn,et al.  Mechanizing Temporal Knowledge , 1977, Artif. Intell..

[65]  Rina Dechter,et al.  Coping With Disjunctions in Temporal Constraint Satisfaction Problems , 1993, AAAI.

[66]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[67]  Christian Freksa,et al.  Temporal Reasoning Based on Semi-Intervals , 1992, Artif. Intell..

[68]  Jan,et al.  Finite Representation of In nite Query Answers , 1992 .

[69]  Alexander Reinefeld,et al.  A Symbolic Approach to Interval Constraint Problems , 1992, AISMC.

[70]  Hassan Aït-Kaci,et al.  LOGIN: A Logic Programming Language with Built-In Inheritance , 1986, J. Log. Program..

[71]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[72]  Alexander Reinefeld,et al.  Effective Solution of Qualitative Interval Constraint Problems , 1992, Artif. Intell..

[73]  Roland H. C. Yap,et al.  The CLP( R ) language and system , 1992, TOPL.

[74]  Henry A. Kautz,et al.  Constraint propagation algorithms for temporal reasoning: a revised report , 1989 .

[75]  Itay Meiri,et al.  Combining Qualitative and Quantitative Constraints in Temporal Reasoning , 1991, Artif. Intell..

[76]  Alain Colmerauer,et al.  An introduction to Prolog III , 1989, CACM.

[77]  Pascal Van Hentenryck Constraint satisfaction in logic programming , 1989, Logic programming.

[78]  Eddie Schwalb,et al.  A New Unification Method for Temporal Reasoning with Constraints , 1997, AAAI/IAAI.

[79]  Henry A. Kautz,et al.  Integrating Metric and Qualitative Temporal Reasoning , 1991, AAAI.

[80]  Lenhart K. Schubert,et al.  Efficient Algorithms for Qualitative Reasoning about Time , 1995, Artif. Intell..

[81]  Yoav Shoham,et al.  Temporal Logics in AI: Semantical and Ontological Considerations , 1987, Artif. Intell..