Delaunay triangulation and the convex hull ofn points in expected linear time

An algorithm is presented which produces a Delaunay triangulation ofn points in the Euclidean plane in expected linear time. The expected execution time is achieved when the data are (not too far from) uniformly distributed. A modification of the algorithm discussed in the appendix treats most of the non-uniform distributions. The basis of this algorithm is a geographical partitioning of the plane into boxes by the well-known Radix-sort algorithm. This partitioning is also used as a basis for a linear time algorithm for finding the convex hull ofn points in the Euclidean plane.