A global minimization algorithm for Lipschitz functions

The global optimization problem $${ \min_{x \in S} f(x)}$$ with $${S=[a,b], a, b \in {\bf R}^n}$$ and f(x) satisfying the Lipschitz condition $${|f(x) - f(y)| \leq l\|x-y\|_\infty, \enspace\forall x,y \,{\in}\, S, \ l > 0}$$ , is considered. To solve it a region-search algorithm is introduced. This combines a local minimum algorithm with a procedure that at the ith iteration finds a region Si where the global minimum has to be searched for. Specifically, by making use of the Lipschitz condition, Si, which is a sequence of intervals, is constructed by leaving out from Si-1 an interval where the global minimum cannot be located. A convergence property of the algorithm is given. Further, the ratio between the measure of the initial feasible region and that of the unexplored region may be used as stop rule. Numerical experiments are carried out; these show that the algorithm works well in finding and reducing the measure of the unexplored region.

[1]  Y. Evtushenko Numerical methods for finding global extrema (Case of a non-uniform mesh) , 1971 .

[2]  Luc Devroye,et al.  Progressive global random search of continuous functions , 1978, Math. Program..

[3]  F. Schoen On a sequential search strategy in global optimization problems , 1982 .

[4]  P. Basso Iterative Methods for the Localization of the Global Maximum , 1982 .

[5]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[6]  A. A. Zhigli︠a︡vskiĭ,et al.  Theory of Global Random Search , 1991 .

[7]  Robert L. Smith,et al.  Pure adaptive search in global optimization , 1992, Math. Program..

[8]  Pierre Hansen,et al.  Global optimization of univariate Lipschitz functions: I. Survey and properties , 1989, Math. Program..

[9]  Pierre Hansen,et al.  Global optimization of univariate Lipschitz functions: II. New algorithms and computational comparison , 1989, Math. Program..

[10]  János D. Pintér,et al.  Convergence qualification of adaptive partition algorithms in global optimization , 1992, Math. Program..

[11]  Y. Sergeyev A one-dimensional deterministic global minimization algorithm , 1995 .

[12]  Yaroslav D. Sergeyev,et al.  An Information Global Optimization Algorithm with Local Tuning , 1995, SIAM J. Optim..

[13]  János D. Pintér,et al.  Global optimization in action , 1995 .

[14]  Brigitte Jaumard,et al.  Global optimization of Hölder functions , 1996, J. Glob. Optim..

[15]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.

[16]  P. Pardalos,et al.  Recent developments and trends in global optimization , 2000 .

[17]  Yaroslav D. Sergeyev,et al.  Index information algorithm with local tuning for solving multidimensional global optimization problems with multiextremal constraints , 2011, Math. Program..

[18]  Yaroslav D. Sergeyev,et al.  Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization , 2003, TOMS.

[19]  János D. Pintér,et al.  Extended univariate algorithms for n-dimensional global optimization , 1986, Computing.