A class of fuzzy clusterwise regression models

In this paper we introduce a class of fuzzy clusterwise regression models with LR fuzzy response variable and numeric explanatory variables, which embodies fuzzy clustering, into a fuzzy regression framework. The model bypasses the heterogeneity problem that could arise in fuzzy regression by subdividing the dataset into homogeneous clusters and performing separate fuzzy regression on each cluster. The integration of the clustering model into the regression framework allows us to simultaneously estimate the regression parameters and the membership degree of each observation to each cluster by optimizing a single objective function. The class of models proposed here includes, as special cases, the fuzzy clusterwise linear regression model and the fuzzy clusterwise polynomial regression model. We also introduce a set of goodness of fit indices to evaluate the fit of the regression model within each cluster as well as in the whole dataset. Finally, we consider some cluster validity criteria that are useful in identifying the "optimal" number of clusters. Several applications are provided in order to illustrate the approach.

[1]  Pierpaolo D'Urso,et al.  Fuzzy K-means clustering models for triangular fuzzy time trajectories , 2002 .

[2]  Helmuth Späth,et al.  Algorithm 39 Clusterwise linear regression , 1979, Computing.

[3]  Xiaogang Wang,et al.  Linear grouping using orthogonal regression , 2006, Comput. Stat. Data Anal..

[4]  Mehdi Khashei,et al.  A new hybrid artificial neural networks and fuzzy regression model for time series forecasting , 2008, Fuzzy Sets Syst..

[5]  Wayne S. DeSarbo,et al.  A simulated annealing methodology for clusterwise linear regression , 1989 .

[6]  Christian Hennig,et al.  Identifiablity of Models for Clusterwise Linear Regression , 2000, J. Classif..

[7]  Shih-Pin Chen,et al.  A variable spread fuzzy linear regression model with higher explanatory power and forecasting accuracy , 2008, Inf. Sci..

[8]  J. B. Ramsey,et al.  Estimating Mixtures of Normal Distributions and Switching Regressions , 1978 .

[9]  Manfred Morari,et al.  A clustering technique for the identification of piecewise affine systems , 2001, Autom..

[10]  Kit Yan Chan,et al.  Modeling manufacturing processes using a genetic programming-based fuzzy regression with detection of outliers , 2010, Inf. Sci..

[11]  Jacek M. Leski Epsiv-insensitive Fuzzy C-regression Models: Introduction to Epsiv-insensitive Fuzzy Modeling , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[12]  Xueli An,et al.  T-S fuzzy model identification based on a novel fuzzy c-regression model clustering algorithm , 2009, Eng. Appl. Artif. Intell..

[13]  P. Nurmi Mixture Models , 2008 .

[14]  R.J. Hathaway,et al.  Switching regression models and fuzzy clustering , 1993, IEEE Trans. Fuzzy Syst..

[15]  Ruoning Xu,et al.  Multidimensional least-squares fitting with a fuzzy model , 2001, Fuzzy Sets Syst..

[16]  Thomas Lengauer Operations Research and Statistics , 1990 .

[17]  Miin-Shen Yang,et al.  An omission approach for detecting outliers in fuzzy regression models , 2006, Fuzzy Sets Syst..

[18]  Yuehua Wu,et al.  A consistent procedure for determining the number of clusters in regression clustering , 2005 .

[19]  P. Diamond,et al.  Fuzzy regression analysis , 1999 .

[20]  Pierpaolo D'Urso,et al.  An "orderwise" polynomial regression procedure for fuzzy data , 2002, Fuzzy Sets Syst..

[21]  Heungsun Hwang,et al.  Regularized fuzzy clusterwise ridge regression , 2010, Adv. Data Anal. Classif..

[22]  Pierpaolo D'Urso,et al.  Linear regression analysis for fuzzy = crisp input and fuzzy = crisp output data , 2015 .

[23]  R. Quandt A New Approach to Estimating Switching Regressions , 1972 .

[24]  Pierpaolo D'Urso,et al.  Goodness of fit and variable selection in the fuzzy multiple linear regression , 2006, Fuzzy Sets Syst..

[25]  S. Van Aelst,et al.  Robust linear clustering , 2009 .

[26]  Jing-Rung Yu,et al.  Piecewise regression for fuzzy input-output data with automatic change-point detection by quadratic programming , 2010, Appl. Soft Comput..

[27]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[28]  Pierpaolo D'Urso,et al.  A least-squares approach to fuzzy linear regression analysis , 2000 .

[29]  Pascale G. Quester,et al.  Predicting business ethical tolerance in international markets: a concomitant clusterwise regression analysis , 2003 .

[30]  G. H.Shakouri,et al.  A novel fuzzy linear regression model based on a non-equality possibility index and optimum uncertainty , 2009, Appl. Soft Comput..

[31]  P. Anand Raj,et al.  Ranking alternatives with fuzzy weights using maximizing set and minimizing set , 1999, Fuzzy Sets Syst..

[32]  Y. Y. Hong,et al.  Development of Energy Loss Formula for Distribution Systems Using FCN Algorithm and Cluster-Wise Fuzzy Regression , 2002, IEEE Power Engineering Review.

[33]  R. D. Veaux,et al.  Mixtures of linear regressions , 1989 .

[34]  Ping-Teng Chang,et al.  Applying fuzzy linear regression to VDT legibility , 1996, Fuzzy Sets Syst..

[35]  Miin-Shen Yang,et al.  Fuzzy clustering on LR-type fuzzy numbers with an application in Taiwanese tea evaluation , 2005, Fuzzy Sets Syst..

[36]  Miin-Shen Yang,et al.  On cluster-wise fuzzy regression analysis , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[37]  Michael J. Brusco,et al.  Initializing K-means Batch Clustering: A Critical Evaluation of Several Techniques , 2007, J. Classif..

[38]  Ning Wang,et al.  Fuzzy nonparametric regression based on local linear smoothing technique , 2007, Inf. Sci..

[39]  Pierpaolo D'Urso,et al.  Least squares estimation of a linear regression model with LR fuzzy response , 2006, Comput. Stat. Data Anal..

[40]  J. I. Brauman Clusters , 1996, Science.

[41]  W. DeSarbo,et al.  A maximum likelihood methodology for clusterwise linear regression , 1988 .

[42]  Vassilis G. Kaburlasos,et al.  Piecewise-linear approximation of non-linear models based on probabilistically/possibilistically interpreted intervals' numbers (INs) , 2010, Inf. Sci..

[43]  Pierpaolo D'Urso,et al.  Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable , 2006, Comput. Stat. Data Anal..

[44]  Ying Li,et al.  Asymptotic properties of least squares estimation with fuzzy observations , 2008, Inf. Sci..

[45]  A. Celmins Least squares model fitting to fuzzy vector data , 1987 .

[46]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[47]  Christian Hennig,et al.  Clusters, outliers, and regression: fixed point clusters , 2003 .

[48]  Luis Angel García-Escudero,et al.  Computational Statistics and Data Analysis Robust Clusterwise Linear Regression through Trimming , 2022 .

[49]  Yun-Shiow Chen,et al.  Outliers detection and confidence interval modification in fuzzy regression , 2001, Fuzzy Sets Syst..

[50]  M. Wedel,et al.  A Clusterwise Regression Method for Simultaneous Fuzzy Market Structuring and Benefit Segmentation , 1991 .

[51]  Chen-Chia Chuang,et al.  Extended support vector interval regression networks for interval input-output data , 2008, Inf. Sci..

[52]  J. Bezdek Cluster Validity with Fuzzy Sets , 1973 .

[53]  Didier Dubois,et al.  Possibility theory , 2018, Scholarpedia.

[54]  Christian Hennig,et al.  Cluster-wise assessment of cluster stability , 2007, Comput. Stat. Data Anal..

[55]  Ana Colubi,et al.  Estimation of a simple linear regression model for fuzzy random variables , 2009, Fuzzy Sets Syst..

[56]  Pierpaolo D'Urso,et al.  Regression analysis with fuzzy informational paradigm: a least-squares approach using membership function information , 2003 .

[57]  Pui Lam Leung,et al.  A mathematical programming approach to clusterwise regression model and its extensions , 1999, Eur. J. Oper. Res..

[58]  M. Aitkin,et al.  Mixture Models, Outliers, and the EM Algorithm , 1980 .

[59]  Gilbert Saporta,et al.  Clusterwise PLS regression on a stochastic process , 2002, Comput. Stat. Data Anal..

[60]  김정년,et al.  Managerial Economics 『관리경제학』 , 1976 .

[61]  Jian Yu,et al.  Alpha-Cut Implemented Fuzzy Clustering Algorithms and Switching Regressions , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[62]  Dug Hun Hong,et al.  Ridge estimation for regression models with crisp inputs and Gaussian fuzzy output , 2004, Fuzzy Sets Syst..

[63]  Bilal M. Ayyub,et al.  Fuzzy regression methods - a comparative assessment , 2001, Fuzzy Sets Syst..

[64]  Miin-Shen Yang,et al.  Mountain c-regressions method , 2010, Pattern Recognit..

[65]  M. Roubens Fuzzy clustering algorithms and their cluster validity , 1982 .

[66]  Witold Pedrycz,et al.  A parametric model for fusing heterogeneous fuzzy data , 1996, IEEE Trans. Fuzzy Syst..