Statistical model of the habit and arrangement of mineral crystals in the collagen of bone

[1]  P. Fratzl,et al.  Volume fraction dependence of the structure function in Al-Ag , 1992 .

[2]  P. Fratzl Small-Angle Scattering of Synchrotron Radiation for Studying Solid State and Biological Systems , 1992 .

[3]  E. Bonucci Calcification in Biological Systems , 1992 .

[4]  P. Fratzl,et al.  Mineral crystals in calcified tissues: A comparative study by SAXS , 1992, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[5]  P. Fratzl Volume‐fraction dependence of the scaling function for phase‐separating systems , 1991 .

[6]  Lebowitz,et al.  Scaling functions, self-similarity, and the morphology of phase-separating systems. , 1991, Physical review. B, Condensed matter.

[7]  M. Glimcher,et al.  Three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium phosphate crystals of pickerel (Americanus americanus) and herring (Clupea harengus) bone. , 1991, Journal of molecular biology.

[8]  Peter Fratzl,et al.  Universality of scaled structure functions in quenched systems undergoing phase separation , 1989 .

[9]  S. Weiner,et al.  Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[10]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[11]  A. Arsenault,et al.  A comparative electron microscopic study of apatite crystals in collagen fibrils of rat bone, dentin and calcified turkey leg tendons. , 1989, Bone and mineral.

[12]  W. Landis A study of calcification in the leg tendons from the domestic turkey. , 1986, Journal of ultrastructure and molecular structure research.

[13]  H. Mook,et al.  Neutron diffraction studies of collagen in fully mineralized bone. , 1985, Journal of molecular biology.

[14]  M. Glimcher,et al.  X-ray diffraction radial distribution function studies on bone mineral and synthetic calcium phosphates , 1984 .

[15]  J. Goodisman,et al.  Voronoi cells: An interesting and potentially useful cell model for interpreting the small‐angle scattering of catalysts , 1983 .

[16]  S. Prager,et al.  A model of dynamic scattering by microemulsions , 1982 .

[17]  P. Timmins,et al.  Collagen–mineral axial relationship in calcified turkey leg tendon by X-ray and neutron diffraction , 1977, Nature.

[18]  G. Fournet,et al.  Small‐Angle Scattering of X‐Rays , 1956 .

[19]  G. Porod,et al.  Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen , 1952 .

[20]  P. Fratzl,et al.  Collagen packing and mineralization. An x-ray scattering investigation of turkey leg tendon. , 1993, Biophysical journal.

[21]  A Leith,et al.  Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. , 1993, Journal of structural biology.

[22]  S Lees,et al.  A study of some properties of mineralized turkey leg tendon. , 1992, Connective tissue research.

[23]  H. Höhling,et al.  Collagen mineralization: Aspects of the structural relationship between collagen and the apatitic crystallites , 1990 .

[24]  S. Weiner,et al.  Crystal size and organization in bone. , 1989, Connective tissue research.

[25]  S Lees,et al.  The locus of mineral crystallites in bone. , 1988, Connective tissue research.