Mechanical anisotropy of shape-memory NiTi with two-dimensional networks of micro-channels

[1]  D. Dunand,et al.  Shape-memory NiTi with two-dimensional networks of micro-channels. , 2011, Acta biomaterialia.

[2]  Vamsi Krishna Balla,et al.  Understanding compressive deformation in porous titanium , 2010 .

[3]  A. Wanner,et al.  Damage evolution and domain-level anisotropy in metal/ceramic composites exhibiting lamellar microstructures , 2010 .

[4]  V. Raghavan Fe-Ni-Ti (Iron-Nickel-Titanium) , 2010 .

[5]  D. Dunand,et al.  Ti-6Al-4V with micro- and macropores produced by powder sintering and electrochemical dissolution of steel wires , 2010 .

[6]  S. K. Sadrnezhaad,et al.  Fabrication of porous NiTi-shape memory alloy objects by partially hydrided titanium powder for biomedical applications , 2009 .

[7]  M. Bram,et al.  Powder Metallurgical Near‐Net‐Shape Fabrication of Porous NiTi Shape Memory Alloys for Use as Long‐Term Implants by the Combination of the Metal Injection Molding Process with the Space‐Holder Technique , 2009 .

[8]  Xingke Zhao,et al.  Pore structures of high-porosity NiTi alloys made from elemental powders with NaCl temporary space-holders , 2009 .

[9]  N. Orhan,et al.  A study on microstructure and porosity of NiTi alloy implants produced by SHS , 2009 .

[10]  D. Dunand,et al.  Porous NiTi by creep expansion of argon-filled pores , 2009 .

[11]  S. K. Sadrnezhaad,et al.  Phase transformation behavior of porous NiTi alloy fabricated by powder metallurgical method , 2009 .

[12]  S. Wisutmethangoon,et al.  Characteristics and compressive properties of porous NiTi alloy synthesized by SHS technique , 2009 .

[13]  A. Tuissi,et al.  Thermomechanical Properties of Porous NiTi Alloy Produced by SHS , 2009, Journal of Materials Engineering and Performance.

[14]  Tarık Aydoğmuş,et al.  Processing of porous TiNi alloys using magnesium as space holder , 2009 .

[15]  D. Dunand,et al.  Shape-memory NiTi–Nb foams , 2009 .

[16]  B Vamsi Krishna,et al.  Fabrication of porous NiTi shape memory alloy structures using laser engineered net shaping. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[17]  Dao-xi Li,et al.  Space-holder engineered porous NiTi shape memory alloys with improved pore characteristics and mechanical properties , 2009 .

[18]  D. Dunand,et al.  Creating Aligned, Elongated Pores in Titanium Foams by Swaging of Preforms with Ductile Space‐Holder , 2009 .

[19]  Xianjin Yang,et al.  Effect of porous NiTi alloy on bone formation: A comparative investigation with bulk NiTi alloy for 15 weeks in vivo , 2008 .

[20]  D. Dunand,et al.  Shape-memory NiTi foams produced by replication of NaCl space-holders. , 2008, Acta biomaterialia.

[21]  L. C. Brinson,et al.  Computational modeling of porous shape memory alloys , 2008 .

[22]  Hu Guoxin,et al.  Fabrication of high porous NiTi shape memory alloy by metal injection molding , 2008 .

[23]  Wang Hu,et al.  Optimization of drawbead design in sheet metal forming based on intelligent sampling by using response surface methodology , 2008 .

[24]  David C. Dunand,et al.  Porous Titanium by Electro‐chemical Dissolution of Steel Space‐holders , 2008 .

[25]  X. J. Wang,et al.  Titanium-nickel shape memory alloy foams for bone tissue engineering. , 2008, Journal of the mechanical behavior of biomedical materials.

[26]  S. Stupp,et al.  Porous NiTi for bone implants: a review. , 2008, Acta biomaterialia.

[27]  M. S. Yong,et al.  Porous NiTi fabricated by self-propagating high-temperature synthesis of elemental powders , 2008 .

[28]  C. Chung,et al.  Forming and control of pores by capsule-free hot isostatic pressing in NiTi shape memory alloys , 2008 .

[29]  J. Planell,et al.  Mechanical properties of nickel–titanium foams for reconstructive orthopaedics , 2008 .

[30]  David C. Dunand,et al.  Shape-memory NiTi foams produced by solid-state replication with NaF , 2007 .

[31]  H. Nakajima,et al.  Fabrication, properties, and applications of porous metals with directional pores. , 2007, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[32]  L. Brinson,et al.  Titanium with aligned, elongated pores for orthopedic tissue engineering applications. , 2007, Journal of biomedical materials research. Part A.

[33]  P. Chu,et al.  Pore formation mechanism and characterization of porous NiTi shape memory alloys synthesized by capsule-free hot isostatic pressing , 2007 .

[34]  Youqing Chen,et al.  Fabrication of copper microchannels by the spacer method , 2007 .

[35]  R. Khalifehzadeh,et al.  Powder Metallurgical Fabrication and Characterization of Nanostructured Porous NiTi Shape-Memory Alloy , 2006 .

[36]  David C. Dunand,et al.  Numerical modeling of pore size and distribution in foamed titanium , 2006 .

[37]  M. Taya,et al.  Study on energy absorbing composite structure made of concentric NiTi spring and porous NiTi , 2006 .

[38]  Bin Yuan,et al.  A comparative study of the porous TiNi shape-memory alloys fabricated by three different processes , 2006 .

[39]  B. Bertheville Porous single-phase NiTi processed under Ca reducing vapor for use as a bone graft substitute. , 2006, Biomaterials.

[40]  B. B. Panigrahi,et al.  Dilatometric sintering study of Ti–50Ni elemental powders , 2006 .

[41]  M. Ashby The properties of foams and lattices , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[42]  Xian-Jin Yang,et al.  Stress–strain behavior of porous NiTi alloys prepared by powders sintering , 2005 .

[43]  D. Dunand,et al.  High strength, low stiffness, porous NiTi with superelastic properties. , 2005, Acta Biomaterialia.

[44]  X. Ren,et al.  Physical metallurgy of Ti–Ni-based shape memory alloys , 2005 .

[45]  D. M. Elzey,et al.  A shape memory-based multifunctional structural actuator panel , 2005 .

[46]  Mark A.M. Bourke,et al.  Elastic modulus of shape-memory NiTi from in situ neutron diffraction during macroscopic loading, instrumented indentation, and extensometry , 2005 .

[47]  Akira Kawasaki,et al.  Compression behavior of porous NiTi shape memory alloy , 2005 .

[48]  H. Nakajima,et al.  Anisotropic yield behavior of lotus-type porous iron: Measurements and micromechanical mean-field analysis , 2005 .

[49]  H. Nakajima,et al.  Elastic properties of lotus-type porous iron: acoustic measurement and extended effective-mean-field theory , 2004 .

[50]  C. Yeh,et al.  Synthesis of NiTi intermetallics by self-propagating combustion , 2004 .

[51]  Xian-Jin Yang,et al.  Processing of porous TiNi shape memory alloy from elemental powders by Ar-sintering , 2004 .

[52]  K. Yoon,et al.  Porous TiNi Biomaterial by Self‐Propagating High‐Temperature Synthesis , 2004 .

[53]  M. Qidwai,et al.  Numerical assessment of the dynamic behavior of hybrid shape memory alloy composite , 2004 .

[54]  Han Huang,et al.  Ultrasonic vibration assisted electro-discharge machining of microholes in Nitinol , 2003 .

[55]  John A. Shaw,et al.  Low-density open-cell foams in the NiTi system , 2003 .

[56]  Xingran Liu,et al.  The transformation behavior and the shape memory effect due to cyclic stress/strain for Ti–49.6Ni alloy , 2002 .

[57]  L. Rong,et al.  Synthesis of porous Ni–Ti shape-memory alloys by self-propagating high-temperature synthesis: reaction mechanism and anisotropy in pore structure , 2000 .

[58]  David C. Dunand,et al.  Phase fraction, texture and strain evolution in superelastic NiTi and NiTi–TiC composites investigated by neutron diffraction , 1999 .

[59]  T. Bateman,et al.  Effect of nitinol implant porosity on cranial bone ingrowth and apposition after 6 weeks. , 1999, Journal of biomedical materials research.

[60]  Shuichi Miyazaki,et al.  Cyclic stress-strain characteristics of TiNi and TiNiCu shape memory alloys , 1995 .

[61]  C. M. Wayman,et al.  Engineering Aspects of Shape Memory Alloys , 1990 .

[62]  D. Clarke,et al.  Work hardening due to internal stresses in composite materials , 1975 .

[63]  D. Dunand,et al.  Structure and mechanical properties of Ti–6Al–4V with a replicated network of elongated pores , 2011 .

[64]  A. Mortensen Concise encyclopedia of composite materials , 2007 .

[65]  H. Nakajima,et al.  Fabrication of Lotus-type Porous NiTi Shape Memory Alloys using the Continuous Zone Melting Method and Tensile Property , 2007 .

[66]  P. Withers,et al.  An introduction to metal matrix composites , 1993 .

[67]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .