RiceNet v2: an improved network prioritization server for rice genes

Rice is the most important staple food crop and a model grass for studies of bioenergy crops. We previously published a genome-scale functional network server called RiceNet, constructed by integrating diverse genomics data and demonstrated the use of the network in genetic dissection of rice biotic stress responses and its usefulness for other grass species. Since the initial construction of the network, there has been a significant increase in the amount of publicly available rice genomics data. Here, we present an updated network prioritization server for Oryza sativa ssp. japonica, RiceNet v2 (http://www.inetbio.org/ricenet), which provides a network of 25 765 genes (70.1% of the coding genome) and 1 775 000 co-functional links. Ricenet v2 also provides two complementary methods for network prioritization based on: (i) network direct neighborhood and (ii) context-associated hubs. RiceNet v2 can use genes of the related subspecies O. sativa ssp. indica and the reference plant Arabidopsis for versatility in generating hypotheses. We demonstrate that RiceNet v2 effectively identifies candidate genes involved in rice root/shoot development and defense responses, demonstrating its usefulness for the grass research community.

[1]  E. Marcotte,et al.  An Improved, Bias-Reduced Probabilistic Functional Gene Network of Baker's Yeast, Saccharomyces cerevisiae , 2007, PloS one.

[2]  Hongyu Zhao,et al.  A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies , 2009, Nature Genetics.

[3]  R. Overbeek,et al.  The use of gene clusters to infer functional coupling. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Takuji Sasaki,et al.  The map-based sequence of the rice genome , 2005, Nature.

[5]  P. Bork,et al.  Analysis of genomic context: prediction of functional associations from conserved bidirectionally transcribed gene pairs , 2004, Nature Biotechnology.

[6]  E. Koonin,et al.  Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context. , 2001, Genome research.

[7]  M. Kimmel,et al.  Conflict of interest statement. None declared. , 2010 .

[8]  Matteo Pellegrini,et al.  Prolinks: a database of protein functional linkages derived from coevolution , 2004, Genome Biology.

[9]  E. Marcotte,et al.  Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana , 2010, Nature Biotechnology.

[10]  Ben Lehner Genotype to phenotype: lessons from model organisms for human genetics , 2013, Nature Reviews Genetics.

[11]  Adam J. Smith,et al.  The Database of Interacting Proteins: 2004 update , 2004, Nucleic Acids Res..

[12]  S. Rhee,et al.  MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. , 2004, The Plant journal : for cell and molecular biology.

[13]  Andrei L. Turinsky,et al.  Navigating the global protein-protein interaction landscape using iRefWeb. , 2014, Methods in molecular biology.

[14]  E. Marcotte,et al.  It's the machine that matters: Predicting gene function and phenotype from protein networks. , 2010, Journal of proteomics.

[15]  Zhou Du,et al.  agriGO: a GO analysis toolkit for the agricultural community , 2010, Nucleic Acids Res..

[16]  Andrei L. Turinsky,et al.  A Census of Human Soluble Protein Complexes , 2012, Cell.

[17]  M. Moran,et al.  Large-scale mapping of human protein–protein interactions by mass spectrometry , 2007, Molecular systems biology.

[18]  E. Marcotte,et al.  Genetic dissection of the biotic stress response using a genome-scale gene network for rice , 2011, Proceedings of the National Academy of Sciences.

[19]  Hyojin Kim,et al.  WormNet v3: a network-assisted hypothesis-generating server for Caenorhabditis elegans , 2014, Nucleic Acids Res..

[20]  S. Rhee,et al.  Towards revealing the functions of all genes in plants. , 2014, Trends in plant science.

[21]  Susumu Goto,et al.  Data, information, knowledge and principle: back to metabolism in KEGG , 2013, Nucleic Acids Res..

[22]  Sean R. Davis,et al.  NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..

[23]  Insuk Lee,et al.  Complementarity between distance- and probability-based methods of gene neighbourhood identification for pathway reconstruction. , 2014, Molecular bioSystems.

[24]  B. Snel,et al.  Conservation of gene order: a fingerprint of proteins that physically interact. , 1998, Trends in biochemical sciences.

[25]  Rafael C. Jimenez,et al.  The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases , 2013, Nucleic Acids Res..

[26]  Bin Han,et al.  Resequencing rice genomes: an emerging new era of rice genomics. , 2013, Trends in genetics : TIG.

[27]  Kara Dolinski,et al.  The BioGRID interaction database: 2015 update , 2014, Nucleic Acids Res..

[28]  Insuk Lee,et al.  JiffyNet: a web-based instant protein network modeler for newly sequenced species , 2013, Nucleic Acids Res..

[29]  A. Fraser,et al.  Predicting genetic modifier loci using functional gene networks. , 2010, Genome research.

[30]  R. Durbin,et al.  Systematic Analysis of Human Protein Complexes Identifies Chromosome Segregation Proteins , 2010, Science.

[31]  Insuk Lee,et al.  Towards Establishment of a Rice Stress Response Interactome , 2011, PLoS genetics.

[32]  Gynheung An,et al.  Towards a better bowl of rice: assigning function to tens of thousands of rice genes , 2008, Nature Reviews Genetics.

[33]  Hyojin Kim,et al.  AraNet v2: an improved database of co-functional gene networks for the study of Arabidopsis thaliana and 27 other nonmodel plant species , 2014, Nucleic Acids Res..

[34]  Jian Wang,et al.  BGI-RIS: an integrated information resource and comparative analysis workbench for rice genomics , 2004, Nucleic Acids Res..

[35]  Warren C. Lathe,et al.  Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. , 2000, Genome research.

[36]  Hyojin Kim,et al.  YeastNet v3: a public database of data-specific and integrated functional gene networks for Saccharomyces cerevisiae , 2013, Nucleic Acids Res..

[37]  In suk Lee,et al.  Network approaches to the genetic dissection of phenotypes in animals and humans , 2013 .

[38]  Jian Wang,et al.  Molecular Systems Biology Peer Review Process File toward an Understanding of the Protein Interaction Network of Human Liver Transaction Report , 2022 .

[39]  S. Gygi,et al.  Defining the Human Deubiquitinating Enzyme Interaction Landscape , 2009, Cell.

[40]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[41]  Tae-Ho Lee,et al.  PGDD: a database of gene and genome duplication in plants , 2012, Nucleic Acids Res..

[42]  David E Hill,et al.  next-generation sequencing to generate interactome datasets , 2011 .

[43]  In suk Lee,et al.  Network-assisted crop systems genetics: network inference and integrative analysis. , 2015, Current opinion in plant biology.

[44]  E. Marcotte,et al.  Prioritizing candidate disease genes by network-based boosting of genome-wide association data. , 2011, Genome research.

[45]  Edward M Marcotte,et al.  Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages , 2003, Nature Biotechnology.

[46]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[47]  Erik L. L. Sonnhammer,et al.  InParanoid 8: orthology analysis between 273 proteomes, mostly eukaryotic , 2014, Nucleic Acids Res..

[48]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[49]  Erik L. L. Sonnhammer,et al.  InParanoid 7: new algorithms and tools for eukaryotic orthology analysis , 2009, Nucleic Acids Res..

[50]  Michael Y. Galperin The Molecular Biology Database Collection: 2008 update , 2007, Nucleic Acids Res..

[51]  Wei Zhao,et al.  Gramene: a bird's eye view of cereal genomes , 2005, Nucleic Acids Res..

[52]  D. Eisenberg,et al.  Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Kevin L. Childs,et al.  ORIGINAL ARTICLE , 2002 .

[54]  D. Schwartz,et al.  Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data , 2013, Rice.

[55]  Livia Perfetto,et al.  MINT, the molecular interaction database: 2012 update , 2011, Nucleic Acids Res..