Planification d'expériences numériques en phase exploratoire pour la simulation des phénomènes complexes

La simulation numerique modelise des phenomenes toujours plus complexes. De tels problemes, souvent de grande dimension, exigent des codes sophistiques et couteux en temps de calcul. Le recours systematique au simulateur devient alors illusoire. L'approche privilegiee consiste a definir un nombre reduit de simulations organisees selon un plan d'experiences numeriques a partir duquel une surface de reponse est ajustee pour approcher le simulateur. Nous considerons ici les plans generes par des simulateurs deterministes en phase exploratoire i.e. lorsqu'il n'y a aucune connaissance a priori. Les plans requierent donc certaines proprietes comme le remplissage de l'espace et la bonne repartition des points en projection. Deux indicateurs quantifiant la qualite intrinseque des plans ont ete developpes. Le point essentiel de ce travail concerne un procede de planification basee sur la simulation d'echantillons selon une loi de probabilite par une methode de Monte Carlo par chaines de Markov.

[1]  Two explicit formulae for the distribution function of the sums of n uniformly distributed independent variables , 1952 .

[2]  J. Doob Stochastic processes , 1953 .

[3]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[4]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[5]  D. Lindley On a Measure of the Information Provided by an Experiment , 1956 .

[6]  R. Prim Shortest connection networks and some generalizations , 1957 .

[7]  J. Neyman,et al.  Statistical Approach to Problems of Cosmology , 1958 .

[8]  J. Beardwood,et al.  The shortest path through many points , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  G. Box,et al.  Some New Three Level Designs for the Study of Quantitative Variables , 1960 .

[10]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[11]  J. Hammersley MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .

[12]  E. Hlawka Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .

[13]  G. Matheron Principles of geostatistics , 1963 .

[14]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[15]  L. A. Stone,et al.  Computer Aided Design of Experiments , 1969 .

[16]  David H. Doehlert,et al.  Uniform Shell Designs , 1970 .

[17]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[18]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[19]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 2. The New Algorithm , 1970 .

[20]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[21]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .

[22]  Harald Niederreiter,et al.  Discrepancy and convex programming , 1972 .

[23]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[24]  P J Goodford,et al.  Physicochemical-activity relationship in practice. 2. Rational selection of benzenoid substituents. , 1975, Journal of medicinal chemistry.

[25]  D. J. Strauss A model for clustering , 1975 .

[26]  B. Ripley,et al.  Markov Point Processes , 1977 .

[27]  E. Braaten,et al.  An Improved Low-Discrepancy Sequence for Multidimensional Quasi-Monte Carlo Integration , 1979 .

[28]  Henri Faure Discrépances de suites associées à un système de numération (en dimension un) , 1981 .

[29]  K Ang,et al.  A NOTE ON UNIFORM DISTRIBUTION AND EXPERIMENTAL DESIGN , 1981 .

[30]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[31]  L. D. Clerck,et al.  A method for exact calculation of the stardiscrepancy of plane sets applied to the sequences of Hammersley , 1986 .

[32]  Dussert,et al.  Minimal spanning tree: A new approach for studying order and disorder. , 1986, Physical review. B, Condensed matter.

[33]  Ralph B. D'Agostino,et al.  Goodness-of-Fit-Techniques , 2020 .

[34]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[35]  E. Shiu Convolution of uniform distributions and ruin probability , 1987 .

[36]  David S. Scott,et al.  A computer program for the design of group testing experiments , 1987 .

[37]  R. D'Agostino,et al.  Goodness-of-Fit-Techniques , 1987 .

[38]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[39]  Michelle Sergent,et al.  Contribution de la méthodologie de la recherche expérimentale à l'élaboration de matrices uniformes : application aux effets de solvants et de substituants , 1989 .

[40]  Jerome Sacks,et al.  Designs for Computer Experiments , 1989 .

[41]  P. Gruber,et al.  Funktionen von beschränkter Variation in der Theorie der Gleichverteilung , 1990 .

[42]  M. E. Johnson,et al.  Minimax and maximin distance designs , 1990 .

[43]  T. J. Mitchell,et al.  Bayesian Prediction of Deterministic Functions, with Applications to the Design and Analysis of Computer Experiments , 1991 .

[44]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[45]  Rory A. Fisher,et al.  The Arrangement of Field Experiments , 1992 .

[46]  Y. Zhu,et al.  A method for exact calculation of the discrepancy of low-dimensional finite point sets I , 1993 .

[47]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[48]  David Eppstein,et al.  Computing the discrepancy , 1993, SCG '93.

[49]  Boxin Tang Orthogonal Array-Based Latin Hypercubes , 1993 .

[50]  A. Owen Controlling correlations in latin hypercube samples , 1994 .

[51]  Jeong‐Soo Park Optimal Latin-hypercube designs for computer experiments , 1994 .

[52]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[53]  Russel E. Caflisch,et al.  Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..

[54]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[55]  A method for exact calculation of the discrepancy of low-dimensional finite point sets (II) , 1995 .

[56]  H. Niederreiter,et al.  Tables of ( T, M, S )-Net and ( T, 5 )-Sequence Parameters , 1995 .

[57]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[58]  C. J. Stone,et al.  Polychotomous Regression , 1995 .

[59]  L. Györfi,et al.  Nonparametric entropy estimation. An overview , 1997 .

[60]  W. J. Whiten,et al.  Computational investigations of low-discrepancy sequences , 1997, TOMS.

[61]  Young K. Truong,et al.  Polynomial splines and their tensor products in extended linear modeling: 1994 Wald memorial lecture , 1997 .

[62]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[63]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[64]  José Elguero,et al.  STATISTICAL ANALYSIS OF SOLVENT SCALES. PART 1 , 1997 .

[65]  Gilbert Saporta,et al.  Plans d'expériences : applications à l'entreprise , 1997 .

[66]  J. Andrew Royle,et al.  An algorithm for the construction of spatial coverage designs with implementation in SPLUS , 1998 .

[67]  Kenny Q. Ye Orthogonal Column Latin Hypercubes and Their Application in Computer Experiments , 1998 .

[68]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[69]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[70]  Art B. Owen,et al.  Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.

[71]  Roger Phan-Tan-Luu,et al.  Pharmaceutical Experimental Design , 1998 .

[72]  B. Tuffin A new permutation choice in Halton sequences , 1998 .

[73]  F. Wallet,et al.  Comparison of spatial point patterns and processes characterization methods , 1998 .

[74]  Boxin Tang,et al.  SELECTING LATIN HYPERCUBES USING CORRELATION CRITERIA , 1998 .

[75]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[76]  H. Wynn,et al.  Maximum entropy sampling and optimal Bayesian experimental design , 2000 .

[77]  Ken Seng Tan,et al.  Applications of randomized low discrepancy sequences to the valuation of complex securities , 2000 .

[78]  Eric Thiémard,et al.  Sur le calcul et la majoration de la discrépance à l'origine , 2000 .

[79]  Toby J. Mitchell,et al.  An Algorithm for the Construction of “D-Optimal” Experimental Designs , 2000, Technometrics.

[80]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[81]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[82]  Jon Lee Maximum entropy sampling , 2001 .

[83]  Timothy W. Simpson,et al.  Sampling Strategies for Computer Experiments: Design and Analysis , 2001 .

[84]  T. Simpson,et al.  Comparative studies of metamodelling techniques under multiple modelling criteria , 2001 .

[85]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[86]  A. Jourdan,et al.  ANALYSE STATISTIQUE ET ECHANTILLONNAGE D’EXPERIENCES SIMULEES , 2003 .

[87]  Russell R. Barton,et al.  Ch. 7. A review of design and modeling in computer experiments , 2003 .

[88]  Max Gunzburger,et al.  UNIFORMITY MEASURES FOR POINT SAMPLES IN HYPERCUBES , 2004 .

[89]  Runze Li,et al.  Design and Modeling for Computer Experiments , 2005 .

[90]  Randall D. Manteufel,et al.  Replicated Latin Hypercube Sampling , 2005 .

[91]  Céline Scheidt Analyse statistique d'expériences simulées : Modélisation adaptative de réponses non régulières par krigeage et plans d'expériences, Application à la quantification des incertitudes en ingénierie des réservoirs pétroliers , 2006 .

[92]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[93]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[94]  A. Didierjean,et al.  Introduction à l'algorithmique , 2010 .

[95]  Brian W. Barrett,et al.  Oak Ridge National Laboratory , Oak Ridge , TN , 2022 .