Planification d'expériences numériques en phase exploratoire pour la simulation des phénomènes complexes
暂无分享,去创建一个
[1] Two explicit formulae for the distribution function of the sums of n uniformly distributed independent variables , 1952 .
[2] J. Doob. Stochastic processes , 1953 .
[3] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[4] J. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .
[5] D. Lindley. On a Measure of the Information Provided by an Experiment , 1956 .
[6] R. Prim. Shortest connection networks and some generalizations , 1957 .
[7] J. Neyman,et al. Statistical Approach to Problems of Cosmology , 1958 .
[8] J. Beardwood,et al. The shortest path through many points , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.
[9] G. Box,et al. Some New Three Level Designs for the Study of Quantitative Variables , 1960 .
[10] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[11] J. Hammersley. MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .
[12] E. Hlawka. Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .
[13] G. Matheron. Principles of geostatistics , 1963 .
[14] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[15] L. A. Stone,et al. Computer Aided Design of Experiments , 1969 .
[16] David H. Doehlert,et al. Uniform Shell Designs , 1970 .
[17] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[18] R. Fletcher,et al. A New Approach to Variable Metric Algorithms , 1970, Comput. J..
[19] C. G. Broyden. The Convergence of a Class of Double-rank Minimization Algorithms 2. The New Algorithm , 1970 .
[20] D. Shanno. Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .
[21] D. Goldfarb. A family of variable-metric methods derived by variational means , 1970 .
[22] Harald Niederreiter,et al. Discrepancy and convex programming , 1972 .
[23] W. J. Studden,et al. Theory Of Optimal Experiments , 1972 .
[24] P J Goodford,et al. Physicochemical-activity relationship in practice. 2. Rational selection of benzenoid substituents. , 1975, Journal of medicinal chemistry.
[25] D. J. Strauss. A model for clustering , 1975 .
[26] B. Ripley,et al. Markov Point Processes , 1977 .
[27] E. Braaten,et al. An Improved Low-Discrepancy Sequence for Multidimensional Quasi-Monte Carlo Integration , 1979 .
[28] Henri Faure. Discrépances de suites associées à un système de numération (en dimension un) , 1981 .
[29] K Ang,et al. A NOTE ON UNIFORM DISTRIBUTION AND EXPERIMENTAL DESIGN , 1981 .
[30] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[31] L. D. Clerck,et al. A method for exact calculation of the stardiscrepancy of plane sets applied to the sequences of Hammersley , 1986 .
[32] Dussert,et al. Minimal spanning tree: A new approach for studying order and disorder. , 1986, Physical review. B, Condensed matter.
[33] Ralph B. D'Agostino,et al. Goodness-of-Fit-Techniques , 2020 .
[34] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[35] E. Shiu. Convolution of uniform distributions and ruin probability , 1987 .
[36] David S. Scott,et al. A computer program for the design of group testing experiments , 1987 .
[37] R. D'Agostino,et al. Goodness-of-Fit-Techniques , 1987 .
[38] H. Niederreiter. Low-discrepancy and low-dispersion sequences , 1988 .
[39] Michelle Sergent,et al. Contribution de la méthodologie de la recherche expérimentale à l'élaboration de matrices uniformes : application aux effets de solvants et de substituants , 1989 .
[40] Jerome Sacks,et al. Designs for Computer Experiments , 1989 .
[41] P. Gruber,et al. Funktionen von beschränkter Variation in der Theorie der Gleichverteilung , 1990 .
[42] M. E. Johnson,et al. Minimax and maximin distance designs , 1990 .
[43] T. J. Mitchell,et al. Bayesian Prediction of Deterministic Functions, with Applications to the Design and Analysis of Computer Experiments , 1991 .
[44] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[45] Rory A. Fisher,et al. The Arrangement of Field Experiments , 1992 .
[46] Y. Zhu,et al. A method for exact calculation of the discrepancy of low-dimensional finite point sets I , 1993 .
[47] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[48] David Eppstein,et al. Computing the discrepancy , 1993, SCG '93.
[49] Boxin Tang. Orthogonal Array-Based Latin Hypercubes , 1993 .
[50] A. Owen. Controlling correlations in latin hypercube samples , 1994 .
[51] Jeong‐Soo Park. Optimal Latin-hypercube designs for computer experiments , 1994 .
[52] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[53] Russel E. Caflisch,et al. Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..
[54] Jorge Nocedal,et al. A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..
[55] A method for exact calculation of the discrepancy of low-dimensional finite point sets (II) , 1995 .
[56] H. Niederreiter,et al. Tables of ( T, M, S )-Net and ( T, 5 )-Sequence Parameters , 1995 .
[57] K. Chaloner,et al. Bayesian Experimental Design: A Review , 1995 .
[58] C. J. Stone,et al. Polychotomous Regression , 1995 .
[59] L. Györfi,et al. Nonparametric entropy estimation. An overview , 1997 .
[60] W. J. Whiten,et al. Computational investigations of low-discrepancy sequences , 1997, TOMS.
[61] Young K. Truong,et al. Polynomial splines and their tensor products in extended linear modeling: 1994 Wald memorial lecture , 1997 .
[62] Eric Walter,et al. Identification of Parametric Models: from Experimental Data , 1997 .
[63] Huaiyu Zhu. On Information and Sufficiency , 1997 .
[64] José Elguero,et al. STATISTICAL ANALYSIS OF SOLVENT SCALES. PART 1 , 1997 .
[65] Gilbert Saporta,et al. Plans d'expériences : applications à l'entreprise , 1997 .
[66] J. Andrew Royle,et al. An algorithm for the construction of spatial coverage designs with implementation in SPLUS , 1998 .
[67] Kenny Q. Ye. Orthogonal Column Latin Hypercubes and Their Application in Computer Experiments , 1998 .
[68] Fred J. Hickernell,et al. A generalized discrepancy and quadrature error bound , 1998, Math. Comput..
[69] Daryl J. Daley,et al. An Introduction to the Theory of Point Processes , 2013 .
[70] Art B. Owen,et al. Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.
[71] Roger Phan-Tan-Luu,et al. Pharmaceutical Experimental Design , 1998 .
[72] B. Tuffin. A new permutation choice in Halton sequences , 1998 .
[73] F. Wallet,et al. Comparison of spatial point patterns and processes characterization methods , 1998 .
[74] Boxin Tang,et al. SELECTING LATIN HYPERCUBES USING CORRELATION CRITERIA , 1998 .
[75] M. D. McKay,et al. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .
[76] H. Wynn,et al. Maximum entropy sampling and optimal Bayesian experimental design , 2000 .
[77] Ken Seng Tan,et al. Applications of randomized low discrepancy sequences to the valuation of complex securities , 2000 .
[78] Eric Thiémard,et al. Sur le calcul et la majoration de la discrépance à l'origine , 2000 .
[79] Toby J. Mitchell,et al. An Algorithm for the Construction of “D-Optimal” Experimental Designs , 2000, Technometrics.
[80] Richard J. Beckman,et al. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.
[81] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[82] Jon Lee. Maximum entropy sampling , 2001 .
[83] Timothy W. Simpson,et al. Sampling Strategies for Computer Experiments: Design and Analysis , 2001 .
[84] T. Simpson,et al. Comparative studies of metamodelling techniques under multiple modelling criteria , 2001 .
[85] David Thomas,et al. The Art in Computer Programming , 2001 .
[86] A. Jourdan,et al. ANALYSE STATISTIQUE ET ECHANTILLONNAGE D’EXPERIENCES SIMULEES , 2003 .
[87] Russell R. Barton,et al. Ch. 7. A review of design and modeling in computer experiments , 2003 .
[88] Max Gunzburger,et al. UNIFORMITY MEASURES FOR POINT SAMPLES IN HYPERCUBES , 2004 .
[89] Runze Li,et al. Design and Modeling for Computer Experiments , 2005 .
[90] Randall D. Manteufel,et al. Replicated Latin Hypercube Sampling , 2005 .
[91] Céline Scheidt. Analyse statistique d'expériences simulées : Modélisation adaptative de réponses non régulières par krigeage et plans d'expériences, Application à la quantification des incertitudes en ingénierie des réservoirs pétroliers , 2006 .
[92] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[93] Sonja Kuhnt,et al. Design and analysis of computer experiments , 2010 .
[94] A. Didierjean,et al. Introduction à l'algorithmique , 2010 .
[95] Brian W. Barrett,et al. Oak Ridge National Laboratory , Oak Ridge , TN , 2022 .