Existence of Primitive Divisors of Lucas and Lehmer Numbers
暂无分享,去创建一个
[1] A. Baker,et al. Contributions to the theory of diophantine equations I. On the representation of integers by binary forms , 1968, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[2] F. J. van der Linden. Class number computations of real abelian number fields , 1982 .
[3] K. Zsigmondy,et al. Zur Theorie der Potenzreste , 1892 .
[4] Michael Pohst,et al. Algorithmic algebraic number theory , 1989, Encyclopedia of mathematics and its applications.
[5] C. Stewart,et al. On Divisors of Fermat, Fibonacci, Lucas, and Lehmer Numbers , 1977 .
[6] Guillaume Hanrot,et al. Solving Thue Equations of High Degree , 1996 .
[7] A. Pethö,et al. Computational Methods For the Resolution of Diophantine Equations , 1990 .
[8] P. Ribenboim. The Fibonacci numbers and the Arctic Ocean , 1995 .
[9] P. Voutier,et al. Primitive divisors of Lucas and Lehmer sequences , 1995 .
[10] Rainer Zimmert,et al. Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung , 1980 .
[11] H. Davenport,et al. THE EQUATIONS 3x2−2 = y2 AND 8x2−7 = z2 , 1969 .
[12] Michel Laurent,et al. Formes linéaires en deux logarithmes et déterminants d′interpolation , 1995 .
[13] Eine regulatorabschätzung , 1978 .
[14] PRIMITIVE DIVISORS OF LUCAS AND LEHMER SEQUENCES, III , 1998, 1211.3108.
[15] Eduardo Friedman,et al. Analytic formulas for the regulator of a number field , 1989 .
[16] Guillaume Hanrot,et al. Solving Thue equations without the full unit group , 2000, Math. Comput..
[17] D. H. Lehmer. An Extended Theory of Lucas' Functions , 1930 .
[18] R. D. Carmichael,et al. On the Numerical Factors of the Arithmetic Forms α n ± β n , 1913 .
[19] Paul Voutier,et al. Primitive divisors of Lucas and Lehmer sequences, III , 1998, Mathematical Proceedings of the Cambridge Philosophical Society.
[20] M. Ward. THE INTRINSIC DIVISORS OF LEHMER NUMBERS , 1955 .
[21] G. Hanrot,et al. Solving superelliptic Diophantine equations by Baker's method , 1998, Compositio Mathematica.
[22] L. Durst. Exceptional real Lehmer sequences. , 1959 .
[23] H. S. Vandiver,et al. On the Integral Divisors of a n - b n , 1904 .
[24] De Weger,et al. de Weger: On the practical solution of the Thue equation , 1989 .
[25] On primitive prime factors of Lehmer numbers I , 1963 .
[26] É. Lucas. Theorie des Fonctions Numeriques Simplement Periodiques , 1878 .
[27] John Myron Masley,et al. Class numbers of real cyclic number fields with small conductor , 1978 .
[28] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[29] L. Durst. Exceptional real Lucas sequences. , 1961 .
[30] Henri Cohen,et al. Subexponential Algorithms for Class Group and Unit Computations , 1997, J. Symb. Comput..