Existence of Primitive Divisors of Lucas and Lehmer Numbers

We prove that for n > 30, every n-th Lucas and Lehmer number has a primitive divisor. This allows us to list all Lucas and Lehmer numbers without a primitive divisor.

[1]  A. Baker,et al.  Contributions to the theory of diophantine equations I. On the representation of integers by binary forms , 1968, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[2]  F. J. van der Linden Class number computations of real abelian number fields , 1982 .

[3]  K. Zsigmondy,et al.  Zur Theorie der Potenzreste , 1892 .

[4]  Michael Pohst,et al.  Algorithmic algebraic number theory , 1989, Encyclopedia of mathematics and its applications.

[5]  C. Stewart,et al.  On Divisors of Fermat, Fibonacci, Lucas, and Lehmer Numbers , 1977 .

[6]  Guillaume Hanrot,et al.  Solving Thue Equations of High Degree , 1996 .

[7]  A. Pethö,et al.  Computational Methods For the Resolution of Diophantine Equations , 1990 .

[8]  P. Ribenboim The Fibonacci numbers and the Arctic Ocean , 1995 .

[9]  P. Voutier,et al.  Primitive divisors of Lucas and Lehmer sequences , 1995 .

[10]  Rainer Zimmert,et al.  Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung , 1980 .

[11]  H. Davenport,et al.  THE EQUATIONS 3x2−2 = y2 AND 8x2−7 = z2 , 1969 .

[12]  Michel Laurent,et al.  Formes linéaires en deux logarithmes et déterminants d′interpolation , 1995 .

[13]  Eine regulatorabschätzung , 1978 .

[14]  PRIMITIVE DIVISORS OF LUCAS AND LEHMER SEQUENCES, III , 1998, 1211.3108.

[15]  Eduardo Friedman,et al.  Analytic formulas for the regulator of a number field , 1989 .

[16]  Guillaume Hanrot,et al.  Solving Thue equations without the full unit group , 2000, Math. Comput..

[17]  D. H. Lehmer An Extended Theory of Lucas' Functions , 1930 .

[18]  R. D. Carmichael,et al.  On the Numerical Factors of the Arithmetic Forms α n ± β n , 1913 .

[19]  Paul Voutier,et al.  Primitive divisors of Lucas and Lehmer sequences, III , 1998, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  M. Ward THE INTRINSIC DIVISORS OF LEHMER NUMBERS , 1955 .

[21]  G. Hanrot,et al.  Solving superelliptic Diophantine equations by Baker's method , 1998, Compositio Mathematica.

[22]  L. Durst Exceptional real Lehmer sequences. , 1959 .

[23]  H. S. Vandiver,et al.  On the Integral Divisors of a n - b n , 1904 .

[24]  De Weger,et al.  de Weger: On the practical solution of the Thue equation , 1989 .

[25]  On primitive prime factors of Lehmer numbers I , 1963 .

[26]  É. Lucas Theorie des Fonctions Numeriques Simplement Periodiques , 1878 .

[27]  John Myron Masley,et al.  Class numbers of real cyclic number fields with small conductor , 1978 .

[28]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[29]  L. Durst Exceptional real Lucas sequences. , 1961 .

[30]  Henri Cohen,et al.  Subexponential Algorithms for Class Group and Unit Computations , 1997, J. Symb. Comput..