Identification and reconciliation of semantic conflicts using metadata

Semantic reconciliation is an important step in determining logical connectivity between a data source (database) and a data receiver (application). Semantic reconciliation is used to determine if the semantics of the data provided by the source is meaningful to the receiver. In this paper we describe an automatic method to establish such semantic agreement through the use of metadata. This work examines the effect of changing data semantics, these changes may occur at the source of the data or they may be changes in the data semantic specifications of the application. Methods are described for detecting these changes and for determining if the database can supply meaningful data to the application. These methods also can be used for semantic reconciliation where an application depends on multiple data sources and for schema integration in heterogeneous database systems.

[1]  Diane C. P. Smith,et al.  Database abstractions: aggregation and generalization , 1977, TODS.

[2]  Hans-Jörg Schek,et al.  Data Structures for an Integrated Data Base Management and Information Retrieval System , 1982, VLDB.

[3]  John McCarthy,et al.  Generality in artificial intelligence , 1987, Resonance.

[4]  Alan Goldfine,et al.  A Technical Overview of the Information Resource Dictionary System (Second Edition) , 1988 .

[5]  Kenneth J. Arrow,et al.  A Strategy of Decision, Policy Evaluation as a Social Process. , 1964 .

[6]  M H. Law,et al.  Guide to Information Resource Dictionary Applications: General Concepts and Strategic`Systems Planning , 1988 .

[7]  Amihai Motro,et al.  Querying database knowledge , 1990, SIGMOD '90.

[8]  E. F. Codd,et al.  Relational database: a practical foundation for productivity , 1982, CACM.

[9]  John Grant,et al.  Logic-based approach to semantic query optimization , 1990, TODS.

[10]  J. W. Lloyd,et al.  Foundations of logic programming; (2nd extended ed.) , 1987 .

[11]  A. Atkinson Subset Selection in Regression , 1992 .

[12]  Stuart E. Madnick,et al.  The inter-database instance identification problem in integrating autonomous systems , 1989, [1989] Proceedings. Fifth International Conference on Data Engineering.

[13]  Serge Abiteboul,et al.  Non first normal form relations to represent hierarchically organized data , 1984, PODS.

[14]  Tomasz Imielinski,et al.  Intelligent Query Answering in Rule Based Systems , 1988, J. Log. Program..

[15]  W. Litwin,et al.  An overview of the multi-database manipulation language MDSL , 1987, Proceedings of the IEEE.

[16]  Keith L. Clark,et al.  Negation as Failure , 1987, Logic and Data Bases.

[17]  Robert A. Kowalski,et al.  Abduction Compared with Negation by Failure , 1989, ICLP.

[18]  Jl McCarthy Information Systems Design for Material Properties Data , 1989 .

[19]  Murray Shanahan,et al.  Prediction is Deduction but Explanation is Abduction , 1989, IJCAI.

[20]  Yuri Breitbart,et al.  Multidatabase Interoperability , 1990, SGMD.

[21]  Deborah L. McGuinness,et al.  CLASSIC: a structural data model for objects , 1989, SIGMOD '89.

[22]  S. Beer The Brain of the Firm , 1972 .

[23]  Corporate Cuadra Elsevier Online databases in the securities and financial markets , 1987 .

[24]  Amit P. Sheth,et al.  Attribute Relationships: An Impediment in Automating Schema Integration , 1989 .

[25]  E. F. Codd,et al.  The Relational Model for Database Management, Version 2 , 1990 .

[26]  Robert M. MacGregor,et al.  The Loom Knowledge Representation Language. , 1987 .

[27]  W. Edwards Deming,et al.  Out of the Crisis , 1982 .

[28]  Peter P. Chen The entity-relationship model: toward a unified view of data , 1975, VLDB '75.

[29]  Ralph E. Griswold,et al.  The SNOBOL4 programming language , 1968 .

[30]  H OlsonMargrethe,et al.  User Involvement and MIS Success , 1984 .

[31]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[32]  Kave Eshghi,et al.  Abductive Planning with Event Calculus , 1988, ICLP/SLP.

[33]  John C. Henderson,et al.  On the Design of Planning Information Systems , 1978 .

[34]  Erich J. Neuhold,et al.  Schema Independent Query Formulation , 1989, ER.

[35]  Paolo Mancarella,et al.  Database Updates through Abduction , 1990, VLDB.

[36]  Terry A. Landers,et al.  An Overview of MULTIBASE , 1986, DDB.

[37]  Tom M. Mitchell,et al.  Learning improved integrity constraints and schemas from exceptions in databases and knowledge bases , 1986 .

[38]  Stuart E. Madnick,et al.  A Polygen Model for Heterogeneous Database Systems: The Source Tagging Perspective , 1990, VLDB.

[39]  Henri Barki,et al.  Rethinking the Concept of User Involvement , 1989, MIS Q..

[40]  LINDA G. DEMICHIEL,et al.  Resolving Database Incompatibility: An Approach to Performing Relational Operations over Mismatched Domains , 1989, IEEE Trans. Knowl. Data Eng..

[41]  Stuart E. Madnick,et al.  Schema integration using metadata , 1989 .

[42]  Cynthia Mathis Beath,et al.  Reconstrucing the Systems Development Organization , 1989, MIS Q..

[43]  E. F. Codd,et al.  A relational model of data for large shared data banks , 1970, CACM.

[44]  James A. Larson,et al.  A Theory of Attribute Equivalence in Databases with Application to Schema Integration , 1989, IEEE Trans. Software Eng..

[45]  Jeffrey D. Ullman,et al.  Principles Of Database And Knowledge-Base Systems , 1979 .

[46]  Dennis McLeod,et al.  A Learning-Based Approach to Meta-data Evolution in an Object-Oriented Database , 1988, OODBS.

[47]  R. MacGregor,et al.  Mermaid—A front-end to distributed heterogeneous databases , 1987, Proceedings of the IEEE.

[48]  Jeffrey D. Ullman,et al.  Formal languages and their relation to automata , 1969, Addison-Wesley series in computer science and information processing.

[49]  Margaret Henderson Law,et al.  Guide to information resource dictionary system applications , 1988 .

[50]  David W. Embley,et al.  An approach to schema integration and query formulation in federated database systems , 1987, 1987 IEEE Third International Conference on Data Engineering.

[51]  Stuart E. Madnick CISL : composing answers from disparate information systems , 1989 .

[52]  Gregory Piatetsky-Shapiro,et al.  CALIDA: A System for Integrated Retrieval from Multiple Heterogeneous Databases , 1988, JCDKB.

[53]  John L. McCarthy,et al.  Metadata Management for Large Statistical Databases , 1982, VLDB.

[54]  M. Morton,et al.  The corporation of the 1990s: Information technology and organizational transformation , 1993 .

[55]  Philip T. Cox,et al.  Causes for Events: Their Computation and Applications , 1986, CADE.

[56]  Richard A. O'Keefe,et al.  The Craft of Prolog , 1990 .

[57]  Stuart E. Madnick,et al.  The Composite Information System Laboratory (CISL) Project at MIT , 1990, IEEE Data Eng. Bull..