Diverse early diagenetic processes of ferromanganese nodules from the eastern Pacific Ocean: evidence from mineralogy and in-situ geochemistry

[1]  M. M. Haring,et al.  Geochemical and mineralogical composition of ferromanganese precipitates from the southern Mariana arc: Evaluation, formation, and implications , 2021, Chemical Geology.

[2]  J. Reinfelder,et al.  High-resolution LA-ICP-MS mapping of deep-sea polymetallic micronodules and its implications on element mobility , 2020 .

[3]  D. Connelly,et al.  Controls on the chemical composition of ferromanganese nodules in the Clarion-Clipperton Fracture Zone, eastern equatorial Pacific , 2019, Marine Geology.

[4]  S. Kasten,et al.  The geochemical behavior of metals during early diagenetic alteration of buried manganese nodules , 2018, Deep Sea Research Part I: Oceanographic Research Papers.

[5]  B. Murton,et al.  Integrated Geochemical and Morphological Data Provide Insights into the Genesis of Ferromanganese Nodules , 2018, Minerals.

[6]  S. Flude,et al.  Application of benchtop micro-XRF to geological materials , 2017, Mineralogical Magazine.

[7]  O. Pourret,et al.  A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements , 2017 .

[8]  Kentaro Nakamura,et al.  Geology and geochemistry of ferromanganese nodules in the Japanese Exclusive Economic Zone around Minamitorishima Island , 2016 .

[9]  T. Kuhn,et al.  Mineralogical characterization of individual growth structures of Mn-nodules with different Ni+Cu content from the central Pacific Ocean , 2015 .

[10]  T. Kuhn,et al.  The influence of suboxic diagenesis on the formation of manganese nodules in the Clarion Clipperton nodule belt of the Pacific Ocean , 2014 .

[11]  A. Manceau,et al.  Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule , 2014 .

[12]  A. Koschinsky,et al.  Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium , 2014 .

[13]  A. Koschinsky,et al.  Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources , 2013 .

[14]  Shan Gao,et al.  Accurate determinations of fifty-four major and trace elements in carbonate by LA–ICP-MS using normalization strategy of bulk components as 100% , 2011 .

[15]  A. Koschinsky,et al.  Oxidative scavenging of cerium on hydrous Fe oxide: Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts , 2009 .

[16]  Shan Gao,et al.  In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard , 2008 .

[17]  A. Zondervan,et al.  Growth history and formation environments of ferromanganese deposits on the Philippine Sea Plate, northwest Pacific Ocean , 2007 .

[18]  M. Marcus,et al.  Chemical and structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides , 2007 .

[19]  A. Paytan,et al.  Phase associations of barium in marine sediments , 2006 .

[20]  A. Koschinsky,et al.  Sequential leaching of marine ferromanganese precipitates: Genetic implications , 1995 .

[21]  F. Manheim,et al.  Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor , 1988, Nature.

[22]  D. Z. Piper,et al.  Ferromanganese nodules from MANOP Sites H, S, and R—Control of mineralogical and chemical composition by multiple accretionary processes , 1984 .

[23]  E. Bonatti,et al.  Mobility of manganese in diagenesis of deep-sea sediments☆ , 1965 .

[24]  J. Mero,et al.  Origin of Oceanic Manganese Minerals , 1964, Science.

[25]  E. Bonatti,et al.  The origin of manganese nodules on the ocean floor , 1965 .

[26]  E. Goldberg,et al.  Chemistry of Pacific pelagic sediments , 1958 .