Reproducing kernel Hilbert space embedding for adaptive estimation of nonlinearities in piezoelectric systems

Nonlinearities in piezoelectric systems can arise from internal factors such as nonlinear constitutive laws or external factors like realizations of boundary conditions. It can be difficult or even impossible to derive detailed models from the first principles of all the sources of nonlinearity in a system. This paper introduces adaptive estimator techniques to approximate the nonlinearities that can arise in certain classes of piezoelectric systems. Here an underlying structural assumption is that the nonlinearities can be modeled as continuous functions in a reproducing kernel Hilbert space (RKHS). This approach can be viewed as a data-driven method to approximate the unknown nonlinear system. This paper introduces the theory behind the adaptive estimator, discusses precise conditions that guarantee convergence of the function estimates, and studies the effectiveness of this approach numerically for a class of nonlinear piezoelectric composite beams.

[1]  Cameron N. Riviere,et al.  Modeling rate-dependent hysteresis in piezoelectric actuators , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[2]  Jiashi Yang,et al.  Analysis of Piezoelectric Devices , 2006 .

[3]  Girish Chowdhary,et al.  A Bayesian nonparametric approach to adaptive control using Gaussian Processes , 2013, 52nd IEEE Conference on Decision and Control.

[4]  Wei Zhu,et al.  Hysteresis modeling and displacement control of piezoelectric actuators with the frequency-dependent behavior using a generalized Bouc–Wen model , 2016 .

[5]  Andrew J. Kurdila,et al.  Koopman Theory and Linear Approximation Spaces , 2018, 1811.10809.

[6]  Musa Jouaneh,et al.  Modeling hysteresis in piezoceramic actuators , 1995 .

[7]  A. Visintin Differential models of hysteresis , 1994 .

[8]  Ralph C. Smith,et al.  Parameter-dependent surrogate model development for PZT bimorph actuators employed for micro-air vehicles , 2019, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[9]  Andrew J. Kurdila,et al.  Persistence of Excitation in Reproducing Kernel Hilbert Spaces, Positive Limit Sets, and Smooth Manifolds , 2019, ArXiv.

[10]  Ralph C. Smith,et al.  Data-Driven Model Development and Feedback Control Design for PZT Bimorph Actuators , 2017 .

[11]  Donald J. Leo,et al.  Engineering Analysis of Smart Material Systems: Leo/Smart Material Systems , 2008 .

[12]  D. J. Ewins,et al.  Modal Testing: Theory and Practice , 1984 .

[13]  Daniel J. Inman,et al.  Nonlinear nonconservative behavior and modeling of piezoelectric energy harvesters including proof mass effects , 2012 .

[14]  Jia Guo,et al.  Persistence of Excitation in Uniformly Embedded Reproducing Kernel Hilbert (RKH) Spaces , 2020, 2020 American Control Conference (ACC).

[15]  Bernhard Schölkopf,et al.  Kernel Mean Embedding of Distributions: A Review and Beyonds , 2016, Found. Trends Mach. Learn..

[16]  Rong-Fong Fung,et al.  Using the modified PSO method to identify a Scott-Russell mechanism actuated by a piezoelectric element , 2009 .

[17]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[18]  Harvey Thomas Banks,et al.  Smart material structures: Modeling, estimation, and control , 1996 .

[19]  Ulrich Gabbert,et al.  Inverse Compensation of Hysteresis Using Krasnoselskii-Pokrovskii Model , 2018, IEEE/ASME Transactions on Mechatronics.

[20]  F. J. Narcowich,et al.  Persistency of Excitation in Identification Using Radial Basis Function Approximants , 1995 .

[21]  Marco Ferrari,et al.  Piezoelectric buckled beams for random vibration energy harvesting , 2012 .

[22]  Rong-Fong Fung,et al.  System identification of a dual-stage XY precision positioning table , 2009 .

[23]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[24]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[25]  Qingsong Xu,et al.  Dahl Model-Based Hysteresis Compensation and Precise Positioning Control of an XY Parallel Micromanipulator With Piezoelectric Actuation , 2010 .

[26]  John H. Crews,et al.  Surrogate model development and feedforward control implementation for PZT bimorph actuators employed for robobee , 2017, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[27]  Rong-Fong Fung,et al.  System identification of a Scott–Russell amplifying mechanism with offset driven by a piezoelectric actuator , 2012 .

[28]  Uma Datta,et al.  Dither control for Dahl model based hysteresis compensation , 2013, 2013 IEEE International Conference on Signal Processing, Computing and Control (ISPCC).

[29]  Micky Rakotondrabe Classical Prandtl-Ishlinskii modeling and inverse multiplicative structure to compensate hysteresis in piezoactuators , 2012, 2012 American Control Conference (ACC).

[30]  Ulrich Gabbert,et al.  Hysteresis and creep modeling and compensation for a piezoelectric actuator using a fractional-order Maxwell resistive capacitor approach , 2013 .

[31]  Yi-Yuan Yu,et al.  Vibrations of Elastic Plates: Linear and Nonlinear Dynamical Modeling of Sandwiches, Laminated Composites, and Piezoelectric Layers , 1996 .

[32]  Daniel J. Inman,et al.  Piezoelectric Energy Harvesting , 2011 .

[33]  H. F. Tiersten,et al.  Linear Piezoelectric Plate Vibrations , 1969 .

[34]  Gérard A. Maugin,et al.  Nonlinear Electromechanical Effects and Applications , 1986 .

[35]  Girish Chowdhary,et al.  Gaussian process based subsumption of a parasitic control component , 2015, 2015 American Control Conference (ACC).

[36]  Timothy D. Usher,et al.  Nonlinear dynamics of piezoelectric high displacement actuators in cantilever mode , 2005 .

[37]  Micky Rakotondrabe,et al.  Bouc–Wen Modeling and Inverse Multiplicative Structure to Compensate Hysteresis Nonlinearity in Piezoelectric Actuators , 2011, IEEE Transactions on Automation Science and Engineering.

[38]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[39]  Bijan Shirinzadeh,et al.  Sliding Mode Control of a Piezoelectric Actuator with Neural Network Compensating Rate-Dependent Hysteresis , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[40]  Leandro dos Santos Coelho,et al.  Nonlinear Black-box System Identification through Neural Networks of a Hysteretic Piezoelectric Robotic Micromanipulator , 2015 .

[41]  R. Ben Mrad,et al.  On the classical Preisach model for hysteresis in piezoceramic actuators , 2003 .

[42]  Steven Grainger,et al.  A comparative study on the use of black box modelling for piezoelectric actuators , 2012 .

[43]  Peter Hagedorn,et al.  Nonlinear Effects of Piezoceramics Excited by Weak Electric Fields , 2003 .

[44]  Jiashi Yang,et al.  An Introduction to the Theory of Piezoelectricity , 2004 .

[45]  Philippe Lutz,et al.  Quadrilateral Modelling and Robust Control of a Nonlinear Piezoelectric Cantilever , 2009, IEEE Transactions on Control Systems Technology.

[46]  John B. Ferris,et al.  Adaptive estimation for nonlinear systems using reproducing kernel Hilbert spaces , 2017, Advances in Computational Mathematics.

[47]  Robert C. Rogers,et al.  Control of a hysteretic actuator using inverse hysteresis compensation , 1998, Smart Structures.

[48]  Petros A. Ioannou,et al.  Robust Adaptive Control , 2012 .

[49]  D. Leo Engineering Analysis of Smart Material Systems , 2007 .

[50]  A. Nayfeh Introduction To Perturbation Techniques , 1981 .

[51]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[52]  M. Mohammadzaheri,et al.  Intelligent modeling of a piezoelectric tube actuator , 2012, 2012 International Symposium on Innovations in Intelligent Systems and Applications.

[53]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[54]  Yangmin Li,et al.  Modeling and High Dynamic Compensating the Rate-Dependent Hysteresis of Piezoelectric Actuators via a Novel Modified Inverse Preisach Model , 2013, IEEE Transactions on Control Systems Technology.

[55]  Girish Chowdhary,et al.  Sensor Selection via Observability Analysis in Feature Space , 2018, 2018 Annual American Control Conference (ACC).

[56]  Yanling Tian,et al.  A Novel Direct Inverse Modeling Approach for Hysteresis Compensation of Piezoelectric Actuator in Feedforward Applications , 2013, IEEE/ASME Transactions on Mechatronics.

[57]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[58]  C.-Y. Su,et al.  Observer based control of piezoelectric actuators with classical Duhem modeled hysteresis , 2009, 2009 American Control Conference.

[59]  P. Hagedorn,et al.  PIEZO–BEAM SYSTEMS SUBJECTED TO WEAK ELECTRIC FIELD: EXPERIMENTS AND MODELLING OF NON-LINEARITIES , 2002 .

[60]  D. Dane Quinn,et al.  The Effect of Non-linear Piezoelectric Coupling on Vibration-based Energy Harvesting , 2009 .

[61]  Grzegorz Litak,et al.  Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass , 2012 .

[62]  Xianmin Zhang,et al.  A review of nonlinear hysteresis modeling and control of piezoelectric actuators , 2019, AIP Advances.

[63]  Utz von Wagner,et al.  Non-linear longitudinal vibrations of piezoceramics excited by weak electric fields , 2003 .

[64]  Steven L. Brunton,et al.  Dynamic mode decomposition - data-driven modeling of complex systems , 2016 .

[65]  S. M. Yang,et al.  System Identification of Smart Structures Using Neural Networks , 1997 .

[66]  Girish Chowdhary,et al.  Adaptive Control using Gaussian-Process with Model Reference Generative Network , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[67]  Harvey Thomas Banks,et al.  Identification of Hysteretic Control Influence Operators Representing Smart Actuators Part I: Formulation , 1997 .

[68]  Girish Chowdhary,et al.  Kernel controllers: A systems-theoretic approach for data-driven modeling and control of spatiotemporally evolving processes , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[69]  D. Inman,et al.  Nonlinear piezoelectricity in electroelastic energy harvesters: Modeling and experimental identification , 2010 .

[70]  Daniel J. Inman,et al.  Energy Harvesting Technologies , 2008 .

[71]  Utz von Wagner,et al.  Non-linear longitudinal vibrations of non-slender piezoceramic rods , 2004 .

[72]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[73]  Girish Chowdhary,et al.  Learning Dynamics Across Similar Spatiotemporally-Evolving Physical Systems , 2017, CoRL.

[74]  Cheng Yap Shee,et al.  Automatic Hysteresis Modeling of Piezoelectric Micromanipulator in Vision-Guided Micromanipulation Systems , 2012, IEEE/ASME Transactions on Mechatronics.

[75]  Anuradha M. Annaswamy,et al.  Stable Adaptive Systems , 1989 .

[76]  André Preumont,et al.  Mechatronics: Dynamics of Electromechanical and Piezoelectric Systems , 2006 .

[77]  Ralph C. Smith,et al.  Smart material systems - model development , 2005, Frontiers in applied mathematics.

[78]  T. Low,et al.  Modeling of a three-layer piezoelectric bimorph beam with hysteresis , 1995 .

[79]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[80]  Chih-Jer Lin,et al.  Tracking control of a biaxial piezo-actuated positioning stage using generalized Duhem model , 2012, Comput. Math. Appl..

[81]  Oded Gottlieb,et al.  Nonlinear dynamics of a noncontacting atomic force microscope cantilever actuated by a piezoelectric layer , 2002 .