Characterization of solar flat plate collectors

Characterization of solar collectors is based on experimental techniques next to validation of associated models. Both techniques may be adopted assuming different complexities. In this work, a general methodology to validate a collector model, with undetermined associated complexity, is presented. It serves to characterize the device by means of critical coefficients, such as the film (convection) transfer coefficient, plate absortance or emmitance. The first step consists of identifying those significant parameters that match the selected model with the experimental data, via nonlinear optimization techniques, applied to steady state conditions. Second, new correlations must be adopted, in those terms where it is necessary (i.e. film coefficient equations). Finally, the overall model must be checked in transient regime. To illustrate the technique, a tailor-made prototype flat plate solar collector has been analyzed. An intermediate complex collector model has been proposed (2D finite-difference method). Both steady and transient states were analyzed under different operating conditions. Parameter identification is based on Newton's method optimization. For parameter approximation, exponential regression functions through multivariate analysis of variance is proposed among many other alternatives. Results depicted a robustness of the overall proposed method as starting point to optimize models applied to solar collectors.

[1]  Jane H. Davidson,et al.  Performance and modeling of thermosyphon heat exchangers for solar water heaters , 1997 .

[2]  H. Kazeminejad Numerical analysis of two dimensional parallel flow flat-plate solar collector , 2002 .

[3]  E. Papanicolaou,et al.  Transient natural convection in a cylindrical enclosure at high Rayleigh numbers , 2002 .

[4]  Philip E. Gill,et al.  Practical optimization , 1981 .

[5]  B. N. Prasad,et al.  Investigation of twisted tape inserted solar water heaters—heat transfer, friction factor and thermal performance results , 2000 .

[6]  K. Vajen,et al.  NUMERICAL SOLUTION AND VALIDATION OF A DYNAMIC MODEL OF SOLAR COLLECTORS WORKING WITH VARYING FLUID FLOW RATE , 1999 .

[7]  Quetzalcoatl Hernandez-Escobedo,et al.  The wind power of Mexico , 2010 .

[8]  Balaram Kundu,et al.  Performance analysis and optimization of absorber plates of different geometry for a flat-plate solar collector: a comparative study , 2002 .

[9]  W. Beckman,et al.  Solar Engineering of Thermal Processes , 1985 .

[10]  Alejandro Zaleta-Aguilar,et al.  Optimal process of solar to thermal energy conversion and design of irreversible flat-plate solar collectors , 2003 .

[11]  Réné Tchinda,et al.  A review of the mathematical models for predicting solar air heaters systems , 2009 .

[12]  A. Oliva,et al.  Numerical simulation of solar collectors: The effect of nonuniform and nonsteady state of the boundary conditions , 1991 .

[13]  J. Orfi,et al.  Developing laminar mixed convection with heat and mass transfer in horizontal and vertical tubes , 2002 .

[14]  Z. Şen Solar energy in progress and future research trends , 2004 .

[15]  George C. Canavos,et al.  Applied probability and statistical methods , 1984 .

[16]  Michela Robba,et al.  Thermal analysis and performance optimization of a solar water heater flat plate collector: Application to Tétouan (Morocco) , 2011 .

[17]  Andreas Richter,et al.  Flow distribution in solar collectors with laminar flow conditions , 2002 .

[18]  E. H. Amer,et al.  A new dynamic method for testing solar flat-plate collectors under variable weather , 1999 .

[19]  Quetzalcoatl Hernandez-Escobedo,et al.  Is the wind a periodical phenomenon? The case of Mexico , 2011 .

[20]  Satish P. Ketkar,et al.  Numerical Thermal Analysis , 1999 .

[21]  Q. C. Hernández Escobedo Use of bovine manure for ex situ bioremediation of diesel contaminated soils in Mexico , 2010 .

[22]  Zdeněk Trávníček,et al.  On the linear heat transfer correlation of a heated circular cylinder in laminar crossflow using a new representative temperature concept , 2001 .

[23]  S. D. Probert,et al.  Response function for solar-energy collectors , 1988 .

[24]  H. Chu,et al.  Inverse determination of surface temperature in thin-film/substrate systems with interface thermal resistance , 2004 .

[25]  Björn Karlsson,et al.  The impact of optical and thermal properties on the performance of flat plate solar collectors , 2000 .

[26]  Vassilis Belessiotis,et al.  Analytical approach of thermosyphon solar domestic hot water system performance , 2002 .

[27]  E. Isaacson,et al.  Numerical Analysis for Applied Science , 1997 .

[28]  Consolación Gil,et al.  Optimization methods applied to renewable and sustainable energy: A review , 2011 .

[29]  L. H. Baker,et al.  Film heat-transfer coefficients in solar collector tubes at low reynolds numbers , 1967 .

[30]  Indu R. Pillai,et al.  Methodology for estimation of potential for solar water heating in a target area , 2007 .

[31]  Adnan Shariah,et al.  Effect of thermal conductivity of absorber plate on the performance of a solar water heater , 1999 .

[32]  D. R. Oliver The effect of natural convection on viscous-flow heat transfer in horizontal tubes , 1962 .

[33]  Baccoli Roberto,et al.  Graybox and adaptative dynamic neural network identification models to infer the steady state efficiency of solar thermal collectors starting from the transient condition , 2010 .

[34]  Philip C. Eames,et al.  Alternative approaches to thermosyphon solar-energy water heater performance analysis and characterisation , 2001 .

[35]  L. Fara,et al.  Determination of the optimal operation mode of a flat solar collector by exergetic analysis and numerical simulation , 2005 .

[36]  Viorel Badescu,et al.  Optimum fin geometry in flat plate solar collector systems , 2006 .

[37]  Alexander Moultanovsky,et al.  Inverse Heat Conduction Problem Approach to Identify the Thermal Characteristics of Super-Hard Synthetic Materials , 2002 .

[38]  M. A. Mohamad,et al.  Optimization of a wickless heat pipe flat plate solar collector , 1999 .

[39]  S. V. Pereverzev,et al.  Natural linearization for the identification of nonlinear heat transfer laws , 2005 .

[40]  Shailesh Kumar,et al.  Experimental investigation of temperature and flow distribution in a thermosyphon solar water heating system , 2002 .

[41]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[42]  P. Avanti,et al.  Finite time thermal analysis of ground integrated-collector-storage solar water heater with transparent insulation cover , 1999 .

[43]  V. Sriramulu,et al.  Heat-transfer analysis of a flat-plate collector in a solar thermal pump , 1994 .

[44]  Cruz Peragón,et al.  Análisis de metodologías de optimización inteligentes para la determinación de la presión en cámara de combustión de motores alternativos de combustión interna por métodos no intrusivos , 2013 .

[45]  Boštjan Černe,et al.  Determination of transient two-dimensional heat transfer in ventilated lightweight low sloped roof using Fourier series , 2007 .

[46]  C. T. Nguyen,et al.  Developing mixed convection with aiding buoyancy in vertical tubes: a numerical investigation of different flow regimes , 2001 .