Quantum Algorithms for Weighing Matrices and Quadratic Residues

Abstract. In this article we investigate how we can employ the structure of combinatorial objects like Hadamard matrices and weighing matrices to devise new quantum algorithms. We show how the properties of a weighing matrix can be used to construct a problem for which the quantum query complexity is significantly lower than the classical one. It is pointed out that this scheme captures both Bernstein and Vazirani's inner-product protocol, as well as Grover's search algorithm. In the second part of the article we consider Paley's construction of Hadamard matrices, which relies on the properties of quadratic characters over finite fields. We design a query problem that uses the Legendre symbol χ (which indicates if an element of a finite field Fq is a quadratic residue or not). It is shown how for a shifted Legendre function fs(i)=χ(i+s) , the unknown s ∈ Fq can be obtained exactly with only two quantum calls to fs . This is in sharp contrast with the observation that any classical, probabilistic procedure requires more than log q + log ((1-ɛ )/2) queries to solve the same problem.

[1]  W. J. Harvey,et al.  THE COMPLEX ANALYTIC THEORY OF TEICHMÜLLER SPACES (Canadian Mathematical Society Series of Monographs and Advanced Texts) , 1991 .

[2]  G. Brassard,et al.  Oracle Quantum Computing , 1992, Workshop on Physics and Computation.

[3]  Hiroshi Kimura,et al.  Hadamard Matrices and Dihedral Groups , 1996, Des. Codes Cryptogr..

[4]  Lih-Yuan Deng,et al.  Orthogonal Arrays: Theory and Applications , 1999, Technometrics.

[5]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[6]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[8]  Mieko Yamada,et al.  A family of Hadamard matrices of dihedral group type , 2000, Discret. Appl. Math..

[9]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[10]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[11]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  Michele Mosca,et al.  The Hidden Subgroup Problem and Eigenvalue Estimation on a Quantum Computer , 1998, QCQC.

[13]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[14]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 2001, JACM.

[15]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[16]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[17]  Neil J. A. Sloane,et al.  The theory of error-correcting codes (north-holland , 1977 .

[18]  Jennifer Seberry,et al.  Complex Hadamard matrices , 1973 .

[19]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[20]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[21]  Douglas R Stinson,et al.  Contemporary design theory : a collection of surveys , 1992 .

[22]  M. Behbahani On orthogonal matrices , 2004 .

[23]  J. Seberry,et al.  Hadamard matrices, Sequences, and Block Designs , 1992 .

[24]  E. Jacobsthal,et al.  Über die Darstellung der Primzahlen der Form 4n + 1 als Summe zweier Quadrate. , 1907 .

[25]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[26]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[27]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[28]  U. Vazirani On the power of quantum computation , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  R. Jozsa Characterizing classes of functions computable by quantum parallelism , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[30]  S. Braunstein,et al.  Quantum computation , 1996 .

[31]  Sean Hallgren,et al.  Efficient Quantum Algorithms for Shifted Quadratic Character Problems , 2000, ArXiv.

[32]  R. Paley On Orthogonal Matrices , 1933 .

[33]  J. Sylvester LX. Thoughts on inverse orthogonal matrices, simultaneous signsuccessions, and tessellated pavements in two or more colours, with applications to Newton's rule, ornamental tile-work, and the theory of numbers , 1867 .

[34]  Daniel R. Simon On the Power of Quantum Computation , 1997, SIAM J. Comput..

[35]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[36]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.