Sapindales:Molecular delimitation and infraordinal groups

An analysis of rbcL sequence data for representatives of families of putative sapindalean/rutalean affinity identified a robust clade of core "sapindalean" taxa that is sister to representatives of Malvales. The constitution of this clade approximates the broad concept of Sapindales (sensu Cronquist). Five lineages within the order are recognized: a "rutaceae" clade (Rutaceae, Cneoraceae, Ptaeroxylaceae, Simaroubaceae sensu stricto, and Meliaceae); a "sapindaceae" clade (Sapindaceae, Aceraceae, and Hippocastenaceae); Anacardiaceae plus Burseraceae; Kirkiaceae; and Zygophyllaceae pro parte. Relationships among these groups were only weakly resolved, but there was no support for the recognition of the two more narrowly defined orders, Rutales and Sapindales sensu stricto. Several families that have previously been allied to Sapindales or Rutales show no affinity to the core sapindalean taxa identified with the molecular data, and are excluded from the order: viz. Akaniaceae, Bretschneideraceae, Conneraceae, Coriariaceae, Melianthaceae, Meliosmaceae, Physenaceae, Rhabdodrendraceae, Sabiaceae, Staphyleaceae, Stylobasiaceae, Surianaceae, and Zygophyllaceae sensu stricto.

[1]  C. Quinn,et al.  Picramniaceae, a new family, and a recircumscription of Simaroubaceae , 1995 .

[2]  P. Gadek,et al.  Rosid affinities of Surianaceae: molecular evidence. , 1993, Molecular phylogenetics and evolution.

[3]  D. Cutler,et al.  Contribution of vegetative anatomy to the systematics of the Zygophyllaceae R.Br. , 1993 .

[4]  M T Clegg,et al.  Chloroplast gene sequences and the study of plant evolution. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[5]  M. Chase,et al.  Carnivorous plants: phylogeny and structural evolution. , 1992, Science.

[6]  B. Bohm,et al.  Flavonoids and affinities of Greyiaceae with a discussion of the occurrence of B-ring deoxyflavonoids in dicotyledonous families , 1992 .

[7]  C. Quinn,et al.  Floral structure and evolution in the Anacardiaceae , 1991 .

[8]  C. Quinn,et al.  Pericarp structure and generic affinities in the Anacardiaceae , 1990 .

[9]  K. Bremer THE LIMITS OF AMINO ACID SEQUENCE DATA IN ANGIOSPERM PHYLOGENETIC RECONSTRUCTION , 1988, Evolution; international journal of organic evolution.

[10]  David J. Mabberley,et al.  The Plant Book , 1988 .

[11]  F. White The taxonomy, chorology and reproductive biology of southern Afri­can Meliaceae and Ptaeroxylaceae , 1986 .

[12]  P. Gadek,et al.  Biflavonyls and the affinities of Blepharocarya , 1985 .

[13]  R. Schmid,et al.  The Systematic Arrangement of Dicotyledonous Families , 1984 .

[14]  F. Petersen,et al.  A Serotaxonomic Appraisal of Amphipterygium and Leitneria- Two Amentiferous Taxa of Rutiflorae (Rosidae) , 1983 .

[15]  R. Dahlgren General aspects of angiosperm evolution and macrosystematics , 1983 .

[16]  A. Cronquist Some realignments in the dicotyledons , 1983 .

[17]  R. Dahlgren A revised system of classification of the angiosperms , 1980 .

[18]  Arthur Cronquist,et al.  Floristic Regions of the World , 1978 .

[19]  C. R. Metcalfe,et al.  On the relationships of Emblingia , 1969 .

[20]  Dennis W. Stevenson,et al.  Monocot systematics: a combined analysis , 1995 .

[21]  P. Gadek,et al.  Simaroubaceae, an artificial construct: evidence from rbcL sequence variation , 1995 .

[22]  M. Donoghue,et al.  Angiosperm family pairs: Preliminary phylogenetic analysis , 1994 .

[23]  J. Rodman,et al.  Nucleotide sequences of rbcL confirm the capparalean affinity of the Australian endemis Gyrostemonaceae , 1994 .

[24]  James F. Smith Phylogenetics of seed plants : An analysis of nucleotide sequences from the plastid gene rbcL , 1993 .

[25]  J. Palmer,et al.  Nucleotide sequences of the rbcL gene indicate monophyly of mustard oil plants , 1993 .

[26]  J. Palmer,et al.  Phylogenetic relationships of the Geraniaceae and Geraniales from rbcL sequence comparisons , 1993 .

[27]  J. Palmer,et al.  A parsimony analysis of the Asteridae sensu lato based on rbcL sequences. , 1993 .

[28]  W. Dickison,et al.  Morphology and anatomy of the malagasy genus Physena (Physenaceae), with a discussion of the relationships of the genus , 1993 .

[29]  C. R. Parks,et al.  Molecular Phylogenetics of the Magnoliidae: Cladistic Analyses of Nucleotide Sequences of the Plastid Gene rbcL , 1993 .

[30]  D. Soltis,et al.  Phylogenetic relationships among members of Saxifragaceae sensu lato based on rbcL sequence data , 1993 .

[31]  J. Rodman,et al.  Affinities of the Australian endemic akaniaceae: New evidence from rbcL sequences , 1992 .

[32]  Larry Hufford,et al.  Rosidae and their relationships to other nonmagnoliid dicotyledons : a phylogenetic analysis using morphological and chemical data , 1992 .

[33]  C. Quinn,et al.  Pericarp anatomy and systematics of the Simaroubaceae sensu lato , 1992 .

[34]  M. Donoghue,et al.  Phylogenetic relationships of Dipsacales based on rbcl sequences , 1992 .

[35]  S. M. Simão,et al.  Chemogeographical evolution of quassinoids in simaroubaceae , 1991 .

[36]  J. Doyle,et al.  Isolation of plant DNA from fresh tissue , 1990 .

[37]  O. Gottlieb,et al.  Evolution of quassinoids and limonoids in the Rutales , 1987 .

[38]  Massayoshi Yoshida,et al.  Ellagic acid derivatives from Rhabdodendron macrophyllum , 1985 .

[39]  D. A. Okorie Chromones and limonoids from Harrisonia abyssinica , 1982 .

[40]  K. Nakanishi,et al.  The Structure of Harrisonin , 1976 .

[41]  T. D. Pennington,et al.  A generic monograph of the Meliaceae , 1975 .

[42]  A. Cronquist The evolution and classification of flowering plants , 1968 .