Systematic search for low-enthalpy sp3 carbon using evolutionary metadynamics

We present a systematic search for low-energy metastable superhard carbon allotropes by using the recently developed evolutionary metadynamics technique. It is known that cold compression of graphite produces an allotrope at 15-20 GPa. Here we look for all low-enthalpy structures accessible from graphite. Starting from 2H- or 3R-graphite and applying the pressure of 20 GPa, a large variety of intermediate $sp^3$ carbon allotropes were observed in evolutionary metadynamics simulation. Our calculation not only found all the previous proposed candidates for `superhard graphite', but also predicted two allotropes (\emph{X}-carbon and \emph{Y}-carbon) showing novel 5+7 and 4+8 topologies. These superhard carbon allotropes can be classified into five families based on 6 (diamond/lonsdaleite), 5+7 (\emph{M/W}-carbon), 5+7 (\emph{X}-carbon), 4+8 (bct C$_4$), and 4+8 (\emph{Y}-carbon) topologies. This study shows evolutionary metadynamics is a powerful approach both to find the global minima and systematically search for low-energy metastable phases reachable from given starting materials.

[1]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[2]  H G Drickamer,et al.  Carbon: A New Crystalline Phase , 1963, Science.

[3]  R. I. Taylor,et al.  A quantitative demonstration of the grain boundary diffusion mechanism for the oxidation of metals , 1982 .

[4]  Zhao,et al.  X-ray diffraction data for graphite to 20 GPa. , 1989, Physical review. B, Condensed matter.

[5]  Syassen,et al.  Optical reflectivity of graphite under pressure. , 1989, Physical review. B, Condensed matter.

[6]  Wataru Utsumi And Takehiko Yagi,et al.  Light-Transparent Phase Formed by Room-Temperature Compression of Graphite , 1991, Science.

[7]  T. Ebbesen,et al.  Superconductivity at 33 K in CsxRbyC60 , 1991, Nature.

[8]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[9]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[10]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[11]  R. Baughman,et al.  A carbon phase that graphitizes at room temperature , 1997 .

[12]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[13]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Peter J. Eng,et al.  Bonding Changes in Compressed Superhard Graphite , 2003, Science.

[15]  H. Sumiya,et al.  Materials: Ultrahard polycrystalline diamond from graphite , 2003, Nature.

[16]  A. Laio,et al.  Predicting crystal structures: the Parrinello-Rahman method revisited. , 2002, Physical review letters.

[17]  V. Sidorov,et al.  Superconductivity in diamond , 2004, Nature.

[18]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[19]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[20]  Hui Wang,et al.  Superhard monoclinic polymorph of carbon. , 2009, Physical review letters.

[21]  Xiao Dong,et al.  Ab initio study of the formation of transparent carbon under pressure , 2010, 1003.1569.

[22]  Mario Valle,et al.  How to predict very large and complex crystal structures , 2010, Comput. Phys. Commun..

[23]  Takashi Miyake,et al.  Body-centered tetragonal C4: a viable sp3 carbon allotrope. , 2010, Physical review letters.

[24]  Qiang Zhu,et al.  Denser than diamond: Ab initio search for superdense carbon allotropes , 2011 .

[25]  Artem R. Oganov,et al.  Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO2 , 2011 .

[26]  E. A. Belenkov,et al.  Structures of diamond-like phases , 2011 .

[27]  S. Leoni,et al.  Superhard s p3 carbon allotropes with odd and even ring topologies , 2011, 1206.5379.

[28]  Yoshiyuki Kawazoe,et al.  Low-Temperature Phase Transformation from Graphite to s p 3 Orthorhombic Carbon , 2011 .

[29]  Li-Min Wang,et al.  Novel superhard carbon: C-centered orthorhombic C8. , 2011, Physical review letters.

[30]  Shibing Wang,et al.  Families of superhard crystalline carbon allotropes constructed via cold compression of graphite and nanotubes. , 2012, Physical review letters.

[31]  Qiang Zhu,et al.  Evolutionary metadynamics: a novel method to predict crystal structures , 2012, 1204.3650.

[32]  Stefan Goedecker,et al.  Crystal Structure of Cold Compressed Graphite , 2012 .