A two-scale generalized finite element method for interaction and coalescence of multiple crack surfaces

Abstract This paper presents the application of a two-scale generalized finite element method ( GFEM ) which allows for static fracture analyses as well as fatigue crack propagation simulations involving the interaction of multiple crack surfaces on fixed, coarse finite element (FE) meshes. The approach is based on the use of numerically-generated enrichment functions computed on-the-fly through the use of locally-defined boundary value problems (BVPs) in the regions of existing mechanically-short cracks. The two-scale GFEM approach is verified against analytical reference solutions as well as alternative numerical approaches for crack interaction problems, including the coalescence of multiple crack surfaces. The numerical examples demonstrate the ability of the proposed approach to deliver accurate results even in scenarios involving multiple, interacting discontinuities contained within a single computational element. The proposed approach is also applied to a crack shielding/crack arrest problem involving two propagating crack surfaces in a representative panel model similar in complexity to that which may be of interest to the aerospace community.

[1]  Ted Belytschko,et al.  The spectral overlay on finite elements for problems with high gradients , 1990 .

[2]  G. Kullmer,et al.  A new criterion for the prediction of crack development in multiaxially loaded structures , 2002 .

[3]  Ivo Babuška,et al.  Computation of the amplitude of stress singular terms for cracks and reentrant corners , 1988 .

[4]  Robert W. Zimmerman,et al.  Numerical simulation of multiple 3D fracture propagation using arbitrary meshes , 2011 .

[5]  J. Fish The s-version of the finite element method , 1992 .

[6]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[7]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[8]  R. Chang,et al.  On crack-crack interaction and coalescence in fatigue , 1982 .

[9]  Ted Belytschko,et al.  A multiscale projection method for macro/microcrack simulations , 2007 .

[10]  Ted Belytschko,et al.  Finite Elements, An Introduction , 1982 .

[11]  O. C. Zienkiewicz,et al.  A new cloud-based hp finite element method , 1998 .

[12]  John D. Whitcomb,et al.  Iterative Global/Local Finite Element Analysis , 1990 .

[13]  Hans Albert Richard,et al.  Development of a new software for adaptive crack growth simulations in 3D structures , 2003 .

[14]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[15]  V. Lazarus,et al.  Front shape and loading evolution during cracks coalescence using an incremental perturbation method , 2015 .

[16]  Pierre-Olivier Bouchard,et al.  Crack propagation modelling using an advanced remeshing technique , 2000 .

[17]  Peter Wriggers,et al.  3D multiscale crack propagation using the XFEM applied to a gas turbine blade , 2014 .

[18]  Michael V. Swain,et al.  Some observations of overlapping interacting cracks , 1978 .

[19]  Jeong-Ho Kim,et al.  A new generalized finite element method for two‐scale simulations of propagating cohesive fractures in 3‐D , 2015 .

[20]  Ted Belytschko,et al.  Combined extended and superimposed finite element method for cracks , 2004 .

[21]  J. Rice,et al.  Slightly curved or kinked cracks , 1980 .

[22]  I. Babuska,et al.  The generalized finite element method , 2001 .

[23]  C. Duarte,et al.  Analysis and applications of a generalized finite element method with global-local enrichment functions , 2008 .

[24]  Dae-Jin Kim,et al.  Analysis of three‐dimensional fracture mechanics problems: A two‐scale approach using coarse‐generalized FEM meshes , 2010 .

[25]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[26]  Ivo Babuska,et al.  The Splitting Method as a Tool for Multiple Damage Analysis , 2005, SIAM J. Sci. Comput..

[27]  Peter Wriggers,et al.  An adaptive multiscale method for crack propagation and crack coalescence , 2013 .

[28]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[29]  S. Melin Why do cracks avoid each other? , 1983 .

[30]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[31]  Jacob Fish,et al.  Adaptive and hierarchical modelling of fatigue crack propagation , 1993 .

[32]  Ted Belytschko,et al.  Crack shielding and amplification due to multiple microcracks interacting with a macrocrack , 2007 .

[33]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[34]  Ivo Babuška,et al.  Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .

[35]  Carlos Armando Duarte,et al.  Extraction of Stress Intensity Factors for the Simulation of 3-D Crack Growth with the Generalized Finite Element Method , 2013 .

[36]  C. Duarte,et al.  EXTENSIONS OF THE TWO-SCALE GENERALIZED FINITE ELEMENT METHOD TO NONLINEAR FRACTURE PROBLEMS , 2013 .

[37]  E. J. Williams,et al.  A three-dimensional (3D) numerical study of fatigue crack growth using remeshing techniques , 2010 .

[38]  Douglas N. Arnold,et al.  Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM J. Sci. Comput..

[39]  C. Duarte,et al.  A generalized finite element method with global-local enrichment functions for confined plasticity problems , 2012 .

[40]  Xiangmin Jiao,et al.  Three-dimensional crack growth with hp-generalized finite element and face offsetting methods , 2010 .

[41]  E. Rank,et al.  A multiscale finite-element method , 1997 .

[42]  Gerd Heber,et al.  Three-dimensional, parallel, finite element simulation of fatigue crack growth in a spiral bevel pinion gear , 2005 .

[43]  J. Oden,et al.  H‐p clouds—an h‐p meshless method , 1996 .

[44]  D. Chopp,et al.  Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method , 2003 .

[45]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[46]  Somnath Ghosh,et al.  A multi-level computational model for multi-scale damage analysis in composite and porous materials , 2001 .

[47]  Paul A. Wawrzynek,et al.  Simulating Fatigue Crack Growth in Spiral Bevel Pinion , 2003 .

[48]  Carlos Armando Duarte,et al.  Extraction of stress intensity factors from generalized finite element solutions , 2005 .

[49]  Ernst Rank,et al.  Multiscale computations with a combination of the h- and p-versions of the finite-element method , 2003 .

[50]  Paul A. Wawrzynek,et al.  3-D simulation of arbitrary crack growth using an energy-based formulation – Part II: Non-planar growth , 2014 .

[51]  Masayuki Kamaya,et al.  Growth evaluation of multiple interacting surface cracks. Part I: Experiments and simulation of coalesced crack , 2008 .

[52]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[53]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[54]  Carlos Armando Duarte,et al.  Improvements of explicit crack surface representation and update within the generalized finite element method with application to three‐dimensional crack coalescence , 2014 .

[55]  T. Swift,et al.  Damage tolerance capability , 1994 .

[56]  Caglar Oskay,et al.  Variational multiscale enrichment for modeling coupled mechano‐diffusion problems , 2012 .

[57]  Amir R. Khoei,et al.  Crack growth modeling via 3D automatic adaptive mesh refinement based on modified-SPR technique , 2013 .

[58]  O. Allix,et al.  Non-intrusive and exact global/local techniques for structural problems with local plasticity , 2009 .

[59]  T. Anderson,et al.  Fracture mechanics - Fundamentals and applications , 2017 .

[60]  L. R. F. Rose,et al.  Microcrack interaction with a main crack , 1986 .

[61]  P. O’Hara,et al.  Efficient analysis of transient heat transfer problems exhibiting sharp thermal gradients , 2013 .

[62]  Asher A. Rubinstein,et al.  Macrocrack interaction with semi-infinite microcrack array , 1985, International Journal of Fracture.

[63]  T. H. McComb,et al.  Growth and coalescence of multiple fatigue cracks in polycarbonate test specimens , 1986 .

[64]  P. Bouchard,et al.  Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria , 2003 .

[65]  Joseph J. Hollkamp,et al.  Modeling vibratory damage with reduced-order models and the generalized finite element method , 2014 .

[66]  Xiangmin Jiao,et al.  hp‐Generalized FEM and crack surface representation for non‐planar 3‐D cracks , 2009 .