AlInAsSb/GaSb staircase avalanche photodiode

Over 30 years ago, Capasso and co-workers [IEEE Trans. Electron Devices 30, 381 (1982)] proposed the staircase avalanche photodetector (APD) as a solid-state analog of the photomultiplier tube. In this structure, electron multiplication occurs deterministically at steps in the conduction band profile, which function as the dynodes of a photomultiplier tube, leading to low excess multiplication noise. Unlike traditional APDs, the origin of staircase gain is band engineering rather than large applied electric fields. Unfortunately, the materials available at the time, principally AlxGa1−xAs/GaAs, did not offer sufficiently large conduction band offsets and energy separations between the direct and indirect valleys to realize the full potential of the staircase gain mechanism. Here, we report a true staircase APD operation using alloys of a rather underexplored material, AlxIn1−xAsySb1−y, lattice-matched to GaSb. Single step “staircase” devices exhibited a constant gain of ∼2×, over a broad range of applied ...

[1]  John P. R. David,et al.  Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes , 2008 .

[2]  Luke F. Lester,et al.  Characterization of AlInAsSb and AlGaInAsSb MBE-grown Digital Alloys , 2002 .

[3]  J. Conradi,et al.  The distribution of gains in uniformly multiplying avalanche photodiodes: Experimental , 1972 .

[4]  Seth R. Bank,et al.  Broadly Tunable AlInAsSb Digital Alloys Grown on GaSb , 2016 .

[5]  J. Bude,et al.  Thresholds of impact ionization in semiconductors , 1992 .

[6]  W. N. Grant Electron and hole ionization rates in epitaxial silicon at high electric fields , 1973 .

[7]  R. A. Logan,et al.  Ionization Rates of Holes and Electrons in Silicon , 1964 .

[8]  Jeffrey D. Beck,et al.  MWIR HgCdTe avalanche photodiodes , 2001, SPIE Optics + Photonics.

[9]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[10]  Jeffrey D. Beck,et al.  Monte Carlo simulations of Hg0.7Cd0.3Te avalanche photodiodes and resonance phenomenon in the multiplication noise , 2003 .

[11]  S. D. Personick,et al.  Receiver design for optical fiber communication systems , 1980 .

[12]  Chee Hing Tan,et al.  Excess Noise Characteristics of Thin AlAsSb APDs , 2012, IEEE Transactions on Electron Devices.

[13]  Bahaa E. A. Saleh,et al.  Excess noise factors for conventional and superlattice avalanche photodiodes and photomultiplier tubes , 1986 .

[14]  F. Capasso,et al.  Staircase solid-state photomultipliers and avalanche photodiodes with enhanced ionization rates ratio , 1983, IEEE Transactions on Electron Devices.

[15]  S. J. Maddox,et al.  High-Gain InAs Avalanche Photodiodes , 2013, IEEE Journal of Quantum Electronics.

[16]  Takao Kaneda,et al.  A model for reach‐through avalanche photodiodes (RAPD’s) , 1976 .

[17]  S. R. Forrest Chapter 4 Sensitivity of Avalanche Photodetector Receivers for High-Bit-Rate Long-Wavelength Optical Communication Systems , 1985 .

[18]  Joe C. Campbell,et al.  Multigigabit-per-second avalanche photodiode lightwave receivers , 1987 .

[19]  F. Capasso,et al.  Realization of a staircase photodiode: Towards a solid-state photomultiplier , 1990 .

[20]  R. Baertsch Noise and Multiplication Measurements in InSb Avalanche Photodiodes , 1967 .

[21]  Chee Hing Tan,et al.  High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit. , 2011, Optics express.

[22]  Noise properties and time response of the staircase avalanche photodiode , 1985 .

[23]  F. Capasso Avalanche Photodiodes with Enhanced Ionization Rates Ratio: Towards a Solid State Photomultiplier , 1983, IEEE Transactions on Nuclear Science.

[24]  Bahaa E. A. Saleh,et al.  Generalized excess noise factor for avalanche photodiodes of arbitrary structure , 1990 .