Geological Data Acquisition for Site Characterisation at Olkiluoto: a Framework for the Phase of Underground Investigations

[1]  Svensk Kärnbränslehantering Ab,et al.  Äspö Hard Rock Laboratory , 2006 .

[2]  R. Holdsworth,et al.  Continental Reactivation and Reworking , 2001 .

[3]  M. Paterson Experimental Rock Deformation: The Brittle Field , 1978 .

[4]  A. Braathen,et al.  Dynamic development of fault rocks in a crustal‐scale detachment: An example from western Norway , 2004 .

[5]  J. Ramsay,et al.  The techniques of modern structural geology. Volume 2, Foldsand fractures , 1987 .

[6]  C. Spiers,et al.  Effect of phyllosilicates on fluid-assisted healing of gouge-bearing faults , 2000 .

[7]  G. Pennacchioni,et al.  Superheated friction-induced melts in zoned pseudotachylytes within the Adamello tonalites (Italian Southern Alps) , 2004 .

[8]  A. Aydin,et al.  Faults with asymmetric damage zones in sandstone, Valley of Fire State Park, southern Nevada , 2004 .

[9]  R. Knipe Deformation mechanisms — recognition from natural tectonites , 1989 .

[10]  F. Storti,et al.  The damage zone-fault core transition in carbonate rocks: implications for fault growth, structure and permeability , 2003 .

[11]  Frederick M. Chester,et al.  Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California , 1986 .

[12]  R. Groshong Low-temperature deformation mechanisms and their interpretation , 1988 .

[13]  J. Ramsay,et al.  Folds and fractures , 1987 .

[14]  R. Osborne,et al.  Petrogenesis of cataclastic rocks within the San Andreas fault zone of Southern California U.S.A. , 1980 .

[15]  A. Benedicto,et al.  Structural evolution and permeability of normal fault zones in highly porous carbonate rocks , 2006 .

[16]  J. Grocott The relationship between Precambrian shear belts and modern fault systems , 1977, Journal of the Geological Society.

[17]  James P. Evans,et al.  Spatial variability in microscopic deformation and composition of the Punchbowl fault, southern California: implications for mechanisms, fluid–rock interaction, and fault morphology , 1998 .

[18]  Michael A. Wacker,et al.  Faulted joints: kinematics, displacement-length scaling relations and criteria for their identification , 2001 .

[19]  F. Chester,et al.  Composite planar fabric of gouge from the Punchbowl Fault, California , 1987 .

[20]  Z. Shipton,et al.  Fault tip displacement gradients and process zone dimensions , 1998 .

[21]  J. F. Magloughlin,et al.  Pressure-related feedback processes in the generation of pseudotachylytes , 2004 .

[22]  W. Dunne,et al.  Palaeostress analysis of small-scale brittle structures , 1994 .

[23]  J. Ramsay Shear zone geometry: A review , 1980 .

[24]  T. Rivers,et al.  Mid-Proterozoic Laurentia-Baltica , 1990 .

[25]  John W. Gephart,et al.  Stress and the direction of slip on fault planes , 1990 .

[26]  John A. Hudson,et al.  Engineering rock mechanics , 1997 .

[27]  R. Sibson,et al.  Structure and distribution of fault rocks in the Alpine Fault Zone, New Zealand , 1981, Geological Society, London, Special Publications.

[28]  D. Faulkner,et al.  On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain , 2001 .

[29]  C. Passchier,et al.  Field geology of high-grade gneiss terrains , 1990 .

[30]  J. T. Engelder,et al.  Cataclasis and the Generation of Fault Gouge , 1974 .

[31]  P. Davy,et al.  Cataclastic slip band distribution in normal fault damage zones, Nubian sandstones, Suez rift , 2002 .

[32]  James P. Evans,et al.  Fault zone architecture and permeability structure , 1996 .

[33]  F. J. Humphreys,et al.  On mylonites in ductile shear zones , 1980 .

[34]  J. Selverstone,et al.  Styles of footwall uplift along the Simplon and Brenner normal fault systems, central and Eastern Alps , 2001 .

[35]  J. Fredrich,et al.  Laboratory characterization of hydromechanical properties of a seismogenic normal fault system , 1998 .

[36]  Thérèse Granier Origin, damping, and pattern of development of faults in granite , 1985 .

[37]  O. Katz,et al.  Faults and their associated host rock deformation: Part I. Structure of small faults in a quartz–syenite body, southern Israel , 2003 .

[38]  G. King,et al.  The role of off-fault damage in the evolution of normal faults , 2004 .

[39]  F. Beunk,et al.  Structural evolution of the accretional continental margin of the Paleoproterozoic Svecofennian orogen in southern Sweden. , 2001 .

[40]  Ronaldo I. Borja,et al.  Geological and mathematical framework for failure modes in granular rock , 2006 .

[41]  K. McClay,et al.  The Mapping of Geological Structures , 1986 .

[42]  T. C. Chamberlin The Method of Multiple Working Hypotheses: With this method the dangers of parental affection for a favorite theory can be circumvented. , 1965, Science.

[43]  Design of technique for foliation measurements from borehole images, borehole OL-KR12 , 2004 .

[44]  C. Scholz The Mechanics of Earthquakes and Faulting , 1990 .

[45]  F. Fusseis,et al.  Networking of shear zones at the brittle-to-viscous transition (Cap de Creus, NE Spain) , 2006 .

[46]  Raymond Munier,et al.  Respect distances; rationale and means of computation , 2008 .

[47]  M. Stewart,et al.  The structure and rheological evolution of reactivated continental fault zones: a review and case study , 2001, Geological Society, London, Special Publications.

[48]  S. Priest Discontinuity Analysis for Rock Engineering , 1992 .

[49]  David D. Pollard,et al.  Fundamentals of Structural Geology , 2005 .

[50]  R. Sibson Brecciation processes in fault zones: Inferences from earthquake rupturing , 1986 .

[51]  W. B. Kamb,et al.  Ice petrofabric observations from Blue Glacier, Washington, in relation to theory and experiment , 1959 .

[52]  C. Passchier,et al.  Shear-sense indicators: A review , 1991 .

[53]  B. Célérier,et al.  How much does slip on a reactivated fault plane constrain the stress tensor , 1988 .

[54]  Paul F. Williams,et al.  An Outline of Structural Geology , 1976 .

[55]  N. Price Fault and Joint Development in Brittle and Semi-brittle Rock , 1966 .

[56]  G. Ranalli,et al.  Estimation of the frictional strength of faults from inversion of fault-slip data: a new method , 1995 .

[57]  Paul Segall,et al.  Nucleation and growth of strike slip faults in granite , 1983 .

[58]  R. E. Wallace,et al.  Characteristics of faults and shear zones in deep mines , 1986 .

[59]  Ian Davison,et al.  Damage zone geometry around fault tips , 1995 .

[60]  R. Allmendinger,et al.  Kinematic analysis of fault-slip data , 1990 .

[61]  J. Ramsay,et al.  Strain variation in shear belts , 1970 .

[62]  Z. Reches Determination of the tectonic stress tensor from slip along faults that obey the Coulomb yield condition , 1987 .

[63]  A. Rodhe,et al.  Ductile and brittle deformation within the Protogine Zone, southern Sweden: A discussion , 1994 .

[64]  J. Angelier From orientation to magnitudes in paleostress determinations using fault slip data , 1989 .

[65]  R. Lisle,et al.  Favoured states of palaeostress in the Earth's crust: evidence from fault-slip data , 2006 .

[66]  P. L. Hancock,et al.  Brittle microtectonics: principles and practice , 1985 .

[67]  Z. Reches,et al.  Drag along faults , 1995 .

[68]  B. Feuga,et al.  The fracture of rocks , 1986 .

[69]  H. Stel Crystal growth in cataclasites: Diagnostic microstructures and implications , 1981 .

[70]  N. Fry The Field Description of Metamorphic Rocks , 1984 .

[71]  Frederick W. Vollmer,et al.  C program for automatic contouring of spherical orientation data using a modified Kamb method , 1995 .

[72]  B. Atkinson Fracture Mechanics of Rock , 1987 .

[73]  François Renard,et al.  How pressure solution creep and fracturing processes interact in the upper crust to make it behave in both a brittle and viscous manner , 1999 .

[74]  C. Talbot,et al.  Strain ellipsoids from incompetent dykes: Application to volume loss during mylonitization in the Singö gneiss zone, central Sweden , 1995 .

[75]  A. Aydin,et al.  Architecture and deformation mechanism of a basin-bounding normal fault in Mesozoic platform carbonates, central Italy , 2006 .

[76]  Terry Engelder,et al.  Stress Regimes in the Lithosphere , 1992 .

[77]  Hee-Kwon Lee,et al.  Comparison of structural features of the fault zone developed at different protoliths: Crystalline rocks and mudrocks , 2005 .

[78]  R. Thorpe,et al.  The Field Description of Igneous Rocks , 1985 .

[79]  P. Nurmi,et al.  Precambrian geology of Finland : key to the evolution of the fennoscandian shield , 2005 .

[80]  F. Chester,et al.  Microfracture analysis of fault growth and wear processes, Punchbowl Fault, San Andreas system, California , 2003 .

[81]  D. Pollard,et al.  Progress in understanding jointing over the past century , 1988 .

[82]  P. Andréasson,et al.  Geology of the Protogine Zone south of Lake Vättern, southern Sweden: A reinterpretation , 1990 .

[83]  Nick Barton,et al.  Engineering classification of rock masses for the design of tunnel support , 1974 .

[84]  T. Engelder,et al.  Neotectonic joints: Discussion and reply , 1991 .

[85]  John G. Ramsay,et al.  The techniques of modern structural geology , 1987 .

[86]  E. K. Pearce,et al.  A photographic atlas , 1921 .

[87]  D. Sanderson,et al.  The relationship between displacement and length of faults: a review , 2005 .

[88]  M. Zoback The 1906 earthquake and a century of progress in understanding earthquakes and their hazards , 2006 .

[89]  Z. Shipton,et al.  A conceptual model for the origin of fault damage zone structures in high-porosity sandstone , 2003 .

[90]  George H. Davis,et al.  Structural geology of rocks and regions , 1984 .

[91]  R. Hetzel,et al.  A laser-probe 40Ar/39Ar study of pseudotachylite from the Tambach Fault Zone, Kenya: direct isotopic dating of brittle faults , 2001 .

[92]  G. Davis,et al.  Structural Geology of Rocks and Regions, 2nd Edition , 1996 .

[93]  S. Cox,et al.  K–Ar dating of fault gouge in the northern Sydney Basin, NSW, Australia—implications for the breakup of Gondwana , 2004 .

[94]  James P. Evans,et al.  Permeability of fault-related rocks, and implications for hydraulic structure of fault zones , 1997 .

[95]  R. Holdsworth,et al.  A reappraisal of the Sibson‐Scholz fault zone model: The nature of the frictional to viscous (“brittle‐ductile”) transition along a long‐lived, crustal‐scale fault, Outer Hebrides, Scotland , 2001 .

[96]  I. Henderson,et al.  Emplacement of polygeneration pegmatites in relation to Sveco-Norwegian contractional tectonics: examples from southern Norway , 2004 .

[97]  S. Schmid,et al.  An evaluation of criteria to deduce the sense of movement in sheared rocks , 1983 .

[98]  A. Lin S–C fabrics developed in cataclastic rocks from the Nojima fault zone, Japan and their implications for tectonic history , 2001 .

[99]  H. Stel,et al.  Flow and deformation of viscous, silica-oversaturated dispersions in low-grade faults , 1994 .

[100]  R. Bischke,et al.  Applied Subsurface Geological Mapping , 1990 .

[101]  J. Byerlee,et al.  Structures developed in fault gouge during stable sliding and stick-slip , 1978 .

[102]  Terry Engelder,et al.  2 – JOINTS AND SHEAR FRACTURES IN ROCK , 1987 .

[103]  Jussi Mattila A System of Nomenclature for Rocks in Olkiluoto , 2006 .

[104]  D. Sanderson,et al.  Fault damage zones , 2004 .

[105]  Richard H. Sibson,et al.  Fault rocks and fault mechanisms , 1977, Journal of the Geological Society.

[106]  J. Karson,et al.  Ultracataclasis, sintering, and frictional melting in pseudotachylytes from East Greenland , 1999 .

[107]  S. Schmid,et al.  Oblique slip and block rotation along the Engadine line , 1993 .

[108]  Nick Barton,et al.  Some new Q-value correlations to assist in site characterisation and tunnel design , 2002 .

[109]  K. O'Hara A pseudotachylyte geothermometer , 2001 .