Complete representation of a tapeworm genome reveals chromosomes capped by centromeres, necessitating a dual role in segregation and protection

Background Chromosome-level assemblies are indispensable for accurate gene prediction, synteny assessment, and understanding higher-order genome architecture. Reference and draft genomes of key helminth species have been published, but little is yet known about the biology of their chromosomes. Here, we present the complete genome of the tapeworm Hymenolepis microstoma , providing a reference quality, end-to-end assembly that represents the first fully assembled genome of a spiralian/lophotrochozoan, revealing new insights into chromosome evolution. Results Long-read sequencing and optical mapping data were added to previous short-read data enabling complete re-assembly into six chromosomes, consistent with karyology. Small genome size (169 Mb) and lack of haploid variation (1 SNP/3.2 Mb) contributed to exceptionally high contiguity with only 85 gaps remaining in regions of low complexity sequence. Resolution of repeat regions reveals novel gene expansions, micro-exon genes, and spliced leader trans-splicing, and illuminates the landscape of transposable elements, explaining observed length differences in sister chromatids. Syntenic comparison with other parasitic flatworms shows conserved ancestral linkage groups indicating that the H. microstoma karyotype evolved through fusion events. Strikingly, the assembly reveals that the chromosomes terminate in centromeric arrays, indicating that these motifs play a role not only in segregation, but also in protecting the linear integrity and full lengths of chromosomes. Conclusions Despite strong conservation of canonical telomeres, our results show that they can be substituted by more complex, species-specific sequences, as represented by centromeres. The assembly provides a robust platform for investigations that require complete genome representation.

[1]  Cédric Feschotte,et al.  RepeatModeler2 for automated genomic discovery of transposable element families , 2020, Proceedings of the National Academy of Sciences.

[2]  Bastien Saint-Leandre,et al.  The Telomere Paradox: Stable Genome Preservation with Rapidly Evolving Proteins. , 2020, Trends in genetics : TIG.

[3]  Zijie Zhang,et al.  RADAR: differential analysis of MeRIP-seq data with a random effect model , 2019, Genome Biology.

[4]  Andrew G. Clark,et al.  RepeatModeler2: automated genomic discovery of transposable element families , 2019, bioRxiv.

[5]  D. Bachtrog,et al.  Dynamic turnover of centromeres drives karyotype evolution in Drosophila , 2019, bioRxiv.

[6]  K. James,et al.  The tapeworm interactome: inferring confidence scored protein-protein interactions from the proteome of Hymenolepis microstoma , 2019, BMC Genomics.

[7]  R. O’Neill,et al.  Centromere Repeats: Hidden Gems of the Genome , 2019, Genes.

[8]  M. Blaxter,et al.  Chromosome-Wide Evolution and Sex Determination in the Three-Sexed Nematode Auanema rhodensis , 2019, G3: Genes, Genomes, Genetics.

[9]  E. Schwarz,et al.  Transcriptomic Resources for Parasitic Nematodes of Veterinary Importance. , 2019, Trends in parasitology.

[10]  N. Holroyd,et al.  Genome-wide transcriptome profiling and spatial expression analyses identify signals and switches of development in tapeworms , 2018, EvoDevo.

[11]  S. Kelly,et al.  OrthoFinder: phylogenetic orthology inference for comparative genomics , 2019, Genome Biology.

[12]  M. Severgnini,et al.  Genome sequencing of Prototheca zopfii genotypes 1 and 2 provides evidence of a severe reduction in organellar genomes , 2018, Scientific Reports.

[13]  Stephen J. Smith Q&A: Array tomography , 2018, BMC Biology.

[14]  F. Smith,et al.  Analyses of nervous system patterning genes in the tardigrade Hypsibius exemplaris illuminate the evolution of panarthropod brains , 2018, EvoDevo.

[15]  B. Moumen,et al.  Genomics analysis of Aphanomyces spp. identifies a new class of oomycete effector associated with host adaptation , 2018, BMC biology.

[16]  F. Moravec,et al.  New records of philometrids (Nematoda: Philometridae) from marine fishes off Australia, including description of four new species and erection of Digitiphilometroides gen. n. , 2018, Folia parasitologica.

[17]  Dariusz M Plewczynski,et al.  Three-dimensional Epigenome Statistical Model: Genome-wide Chromatin Looping Prediction , 2018, Scientific Reports.

[18]  M. Sammeth,et al.  Landscape of the spliced leader trans-splicing mechanism in Schistosoma mansoni , 2018, Scientific Reports.

[19]  M. Špakulová,et al.  Tapeworm chromosomes: their value in systematics with instructions for cytogenetic study. , 2018, Folia parasitologica.

[20]  R. Range,et al.  A novel gene’s role in an ancient mechanism: secreted Frizzled-related protein 1 is a critical component in the anterior–posterior Wnt signaling network that governs the establishment of the anterior neuroectoderm in sea urchin embryos , 2018, EvoDevo.

[21]  L. S. Swapna,et al.  Comparative genomics of the major parasitic worms , 2017, Nature Genetics.

[22]  S. McKinney,et al.  An adaptable chromosome preparation methodology for use in invertebrate research organisms , 2017, bioRxiv.

[23]  D. Schwartz,et al.  Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters , 2017, BMC Genomics.

[24]  Robert M. Waterhouse,et al.  BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics , 2017, bioRxiv.

[25]  J. Krajčovič,et al.  On the Possibility of an Early Evolutionary Origin for the Spliced Leader Trans-Splicing , 2017, Journal of Molecular Evolution.

[26]  Kevin L. Howe,et al.  WormBase ParaSite − a comprehensive resource for helminth genomics , 2017, Molecular and biochemical parasitology.

[27]  E. Ghedin,et al.  Lessons from the genomes and transcriptomes of filarial nematodes. , 2017, Molecular and biochemical parasitology.

[28]  L. Bachmann,et al.  Atp8 is in the ground pattern of flatworm mitochondrial genomes , 2017, BMC Genomics.

[29]  Basten L. Snoek,et al.  Contribution of trans regulatory eQTL to cryptic genetic variation in C. elegans , 2017, bioRxiv.

[30]  J. Passos,et al.  Telomeres and Cell Senescence - Size Matters Not , 2017, EBioMedicine.

[31]  S. Koren,et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.

[32]  D. Cohen,et al.  Publisher's Note , 2017, Neuroscience & Biobehavioral Reviews.

[33]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[34]  M. A. Biscotti,et al.  Transposons, Genome Size, and Evolutionary Insights in Animals , 2016, Cytogenetic and Genome Research.

[35]  K. Brehm,et al.  Comparative analysis of Wnt expression identifies a highly conserved developmental transition in flatworms , 2016, BMC Biology.

[36]  Jan Vrána,et al.  BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes , 2016, Plant biotechnology journal.

[37]  I. Cheeseman,et al.  The molecular basis for centromere identity and function , 2015, Nature Reviews Molecular Cell Biology.

[38]  Michael C. Schatz,et al.  Metassembler: merging and optimizing de novo genome assemblies , 2015, bioRxiv.

[39]  B. Tjaden,et al.  De novo assembly of bacterial transcriptomes from RNA-seq data , 2015, Genome Biology.

[40]  Katharina J. Hoff,et al.  BRAKER1: Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS , 2016, Bioinform..

[41]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[42]  A. Litwin-Kumar,et al.  Formation and maintenance of neuronal assemblies through synaptic plasticity , 2014, Nature Communications.

[43]  Henry N. Chapman,et al.  Correction: Corrigendum: X-ray holography with a customizable reference , 2014, Nature Communications.

[44]  Bin Tean Teh,et al.  The Opisthorchis viverrini genome provides insights into life in the bile duct , 2014, Nature Communications.

[45]  P. Stadler,et al.  MITOS: improved de novo metazoan mitochondrial genome annotation. , 2013, Molecular phylogenetics and evolution.

[46]  Aaron A. Klammer,et al.  Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data , 2013, Nature Methods.

[47]  Jacqueline A. Keane,et al.  The genomes of four tapeworm species reveal adaptations to parasitism , 2013, Nature.

[48]  Jeffrey Ross-Ibarra,et al.  Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution , 2012, Genome Biology.

[49]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[50]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[51]  E. Louis,et al.  Telomere maintenance and telomerase activity are differentially regulated in asexual and sexual worms , 2012, Proceedings of the National Academy of Sciences.

[52]  K. Brehm,et al.  Cestode genomics – progress and prospects for advancing basic and applied aspects of flatworm biology , 2012, Parasite immunology.

[53]  Jian Wang,et al.  Whole-genome sequence of Schistosoma haematobium , 2012, Nature Genetics.

[54]  Adhemar Zerlotini,et al.  A Systematically Improved High Quality Genome and Transcriptome of the Human Blood Fluke Schistosoma mansoni , 2012, PLoS neglected tropical diseases.

[55]  Yan Huang,et al.  The draft genome of the carcinogenic human liver fluke Clonorchis sinensis , 2011, Genome Biology.

[56]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[57]  P. Olson,et al.  Description of Hymenolepis microstoma (Nottingham strain): a classical tapeworm model for research in the genomic era , 2010, Parasites & Vectors.

[58]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[59]  A. Ivens,et al.  Protein variation in blood-dwelling schistosome worms generated by differential splicing of micro-exon gene transcripts. , 2010, Genome research.

[60]  James K. Bonfield,et al.  Genome analysis Advance Access publication May 30, 2010 Gap5—editing , 2010 .

[61]  M. Averof,et al.  Evidence for multiple independent origins of trans-splicing in Metazoa. , 2010, Molecular biology and evolution.

[62]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[63]  Suzanna Lewis,et al.  Apollo: a community resource for genome annotation editing , 2009, Bioinform..

[64]  John P. Overington,et al.  The genome of the blood fluke Schistosoma mansoni , 2009, Nature.

[65]  G. Cheng,et al.  The Flatworm Spliced Leader 3′-Terminal AUG as a Translation Initiator Methionine* , 2006, Journal of Biological Chemistry.

[66]  Andre R. O. Cavalcanti,et al.  Spliced leader trans-splicing , 2006, Current Biology.

[67]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[68]  Philip Craig Echinococcus multilocularis , 2003, Current opinion in infectious diseases.

[69]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[70]  Steven L Salzberg,et al.  Computational discovery of internal micro-exons. , 2003, Genome research.

[71]  S. Henikoff,et al.  The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA , 2001, Science.

[72]  K. Brehm,et al.  mRNA Trans-splicing in the Human Parasitic CestodeEchinococcus multilocularis * , 2000, The Journal of Biological Chemistry.

[73]  E. Speel,et al.  Rapid Synthesis of Biotin-, Digoxigenin-, Trinitrophenyl-, and Fluorochrome-labeled Tyramides and Their Application for In Situ Hybridization Using CARD Amplification , 1998, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[74]  E. Louis,et al.  Chromosome ends: all the same under their caps. , 1997, Current opinion in genetics & development.

[75]  K. Sullivan,et al.  Assembly of CENP-A into Centromeric Chromatin Requires a Cooperative Array of Nucleosomal DNA Contact Sites , 1997, The Journal of cell biology.

[76]  H. Biessmann,et al.  The unusual telomeres of Drosophila. , 1995, Trends in genetics : TIG.

[77]  J. Edström,et al.  Complex telomere-associated repeat units in members of the genus Chironomus evolve from sequences similar to simple telomeric repeats , 1993, Molecular and cellular biology.

[78]  A M Olovnikov,et al.  A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. , 1973, Journal of theoretical biology.

[79]  A. W. Jones,et al.  The chromosomes of Hymenolepis microstoma (Dujardin 1845). , 1963, The Journal of parasitology.

[80]  A. Sánchez Alvarado,et al.  Molecular cloning and characterization of SL3: a stem cell-specific SL RNA from the planarian Schmidtea mediterranea. , 2014, Gene.

[81]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[82]  Michael Lynch,et al.  The Origins of Genome Architecture , 2007 .

[83]  R. Rausch,et al.  The karyotype of Echinococcus multilocularis (Cestoda: Taeniidae). , 1981, Canadian journal of genetics and cytology. Journal canadien de génétique et de cytologie.

[84]  A. W. Jones,et al.  Chromosome analysis of Hymenolepis microstoma. , 1969, Experimental parasitology.