A new adaptive estimation method of spacecraft thermal mathematical model with an ensemble Kalman filter

Abstract An adaptive estimation method of spacecraft thermal mathematical model is presented. The method is based on the ensemble Kalman filter, which can effectively handle the nonlinearities contained in the thermal model. The state space equations of the thermal mathematical model is derived, where both temperature and uncertain thermal characteristic parameters are considered as the state variables. In the method, the thermal characteristic parameters are automatically estimated as the outputs of the filtered state variables, whereas, in the usual thermal model correlation, they are manually identified by experienced engineers using trial-and-error approach. A numerical experiment of a simple small satellite is provided to verify the effectiveness of the presented method.

[1]  D. Stuempel,et al.  Application of uncertainty philosophy to satellite thermal design , 1984 .

[2]  Eiji Shima,et al.  An Estimation Method of Thermal Contact Resistances in Satellite Thermal Model by Using the Ensemble Kalman Filter , 2010 .

[3]  James V. Beck,et al.  DETERMINATION OF UNDISTURBED TEMPERATURES FROM THERMOCOUPLE MEASUREMENTS USING CORRECTION KERNELS. , 1968 .

[4]  David G. Gilmore,et al.  Satellite thermal control handbook , 1994 .

[5]  N. Takata,et al.  Thermal tests of Engineering Test Satellite VII and thermal mathematical model evaluation , 1998 .

[6]  Pedro L. Valls Pereira Application of Kalman Filter , 1987 .

[7]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[8]  B. Tapley,et al.  Adaptive sequential estimation with unknown noise statistics , 1976 .

[9]  Tomoyuki Higuchi,et al.  Application of the ensemble Kalman filter and smoother to a coupled atmosphere-ocean model , 2007 .

[10]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[11]  M. Rienecker,et al.  Initial testing of a massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model , 2002 .

[12]  R. Gemson,et al.  Importance of initial state covariance matrix for the parameter estimation using an adaptive extended Kalman filter , 1998 .

[13]  Marko Vauhkonen,et al.  Image reconstruction in time-varying electrical impedance tomography based on the extended Kalman filter , 2001 .

[14]  Craig J. Johns,et al.  A two-stage ensemble Kalman filter for smooth data assimilation , 2008, Environmental and Ecological Statistics.

[15]  G. Evensen Using the Extended Kalman Filter with a Multilayer Quasi-Geostrophic Ocean Model , 1992 .

[16]  James D. Annan,et al.  Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter , 2005 .

[17]  Piotr Duda Solution of multidimensional inverse heat conduction problem , 2003 .

[18]  J. Doenecke,et al.  Adjustment of a thermal mathematical model to test data , 1970 .

[19]  M. R. Ananthasayanam,et al.  Adaptive Kalman Filter Tuning In Integration of Low-Cost MEMS-INS/GPS , 2004 .

[20]  Jeffrey P. Walker,et al.  Extended versus Ensemble Kalman Filtering for Land Data Assimilation , 2002 .